首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent studies of the tobacco mosaic virus (TMV) P30 movement protein (MP) fused with green fluorescent protein (GFP) during TMV infection described the involvement of elements of the cytoskeleton and components of the endoplasmic reticulum (ER) in the intracellular trafficking of MP:GFP from the sites of synthesis in the cytoplasm to plasmodesmata. To examine in real-time the pattern of synthesis, accumulation and degradation of MP:GFP, we developed a method to immobilize protoplasts in agarose such that they are maintained alive for extended periods of time. The pattern of MP:GFP accumulation in single living protoplasts visualized by confocal laser scanning microscopy (CLSM) was parallel to that previously described in a population of protoplasts harvested at different times post-infection. Additionally, a network of weakly fluorescent filaments, which are apparently different from microtubules, was observed to surround the nucleus and these filaments were associated with fluorescent bodies (previously identified as ER-derived structures). Later in infection, the fluorescent bodies increased in size and coalesced to form larger structures that accumulated near the periphery of the cells while highly fluorescent non-cortical filaments were observed distributed in the cytoplasm. The putative involvement of these filaments in targeting the fluorescent bodies to the periphery of the cell is discussed. Studies of single, embedded protoplasts make it possible to observe changes in amount and subcellular localization of viral and other proteins.  相似文献   

2.
Thirteen mutations were introduced in the movement protein (MP) gene of Alfalfa mosaic virus (AMV) fused to the green fluorescent protein (GFP) gene and the mutant MP-GFP fusions were expressed transiently in tobacco protoplasts, tobacco suspension cells, and epidermal cells of tobacco leaves. In addition, the mutations were introduced in the MP gene of AMV RNA 3 and the mutant RNAs were used to infect tobacco plants. Ten mutants were affected in one or more of the following functions of MP: the formation of tubular structures on the surface of protoplasts, association with the endoplasmic reticulum (ER) of suspension cells and epidermal cells, targeting to punctate structures in the cell wall of epidermis cells, movement from transfected cells to adjacent cells in epidermis tissue, cell-to-cell movement, or long-distance movement in plants. The mutations point to functional domains of the MP and support the proposed order of events in AMV transport. Studies with several inhibitors indicate that actin or microtubule components of the cytoskeleton are not involved in tubule formation by AMV MP. Evidence was obtained that tubular structures on the surface of transfected protoplasts contain ER- or plasmalemma-derived material.  相似文献   

3.
The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.  相似文献   

4.
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.  相似文献   

5.
Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-beta-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.  相似文献   

6.
Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.  相似文献   

7.
Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of (TMV)MP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.  相似文献   

8.
Fluorescence recovery after photobleaching (FRAP) was used to study the mechanism by which fluorescent-protein-tagged movement protein (MP) of tobacco mosaic virus (TMV) is targeted to plasmodesmata (PD). The data show that fluorescence recovery in PD at the leading edge of an infection requires elements of the cortical actin/endoplasmic reticulum (ER) network and can occur in the absence of an intact microtubule (MT) cytoskeleton. Inhibitors of the actin cytoskeleton (latrunculin and cytochalasin) significantly inhibited MP targeting, while MT inhibitors (colchicine and oryzalin) did not. Application of sodium azide to infected cells implicated an active component of MP transfer to PD. Treatment of cells with Brefeldin A (BFA) at a concentration that caused reabsorption of the Golgi bodies into the ER (precluding secretion of viral MP) had no effect on MP targeting, while disruption of the cortical ER with higher concentrations of BFA caused significant inhibition. Our results support a model of TMV MP function in which targeting of MP to PD during infection is mediated by the actin/ER network.  相似文献   

9.
The experimental host range of Odontoglossum ringspot virus (ORSV), a member of the tobamoviruses, includes several species of Nicotiana , but not N. sylvestris . However, ORSV was able to replicate in protoplasts from N. sylvestris leaves. By using the green fluorescent protein (GFP) as a marker inserted into ORSV, it was found that a small number of single epidermal cells became infected in mechanically inoculated leaves, but the virus did not move cell to cell. The ORSV movement protein (MP) and coat protein (CP) were examined for their ability to effect movement by substitution into Tobacco mosaic virus (TMV) hybrids. Both proteins and the 3' non-translated region (NTR) of ORSV allowed movement of TMV hybrids in N. sylvestris . These results suggested that the inability of ORSV to move in N. sylvestris was due to the replicase gene or the 5'NTR. One possibility was that the replicase gene could indirectly affect movement by failing to produce subgenomic (sg) RNAs for expression of MP or CP, but this appeared not to be the case as ORSV replicated and produced MP and CP sgRNAs, both of which were translated in N. sylvestris protoplasts. Additionally, genomic RNA was encapsidated into virions in N. sylvestris protoplasts. Because the 5'NTR permitted efficient replication and production of replicase proteins, these findings suggest that the replicase of ORSV is responsible for the defect in cell-to-cell movement of ORSV in N. sylvestris .  相似文献   

10.
The movement protein (MP) of Tobacco mosaic virus (TMV) facilitates the cell-to-cell transport of the viral RNA genome through plasmodesmata (Pd). A previous report described the functional reversion of a dysfunctional mutation in MP (Pro81Ser) by two additional amino acid substitution mutations (Thr104Ile and Arg167Lys). To further explore the mechanism underlying this intramolecular complementation event, the mutations were introduced into a virus derivative expressing the MP as a fusion to green fluorescent protein (GFP). Microscopic analysis of infected protoplasts and of infection sites in leaves of MP-transgenic Nicotiana benthamiana indicates that MP(P81S)-GFP and MP(P81S;T104I;R167K)-GFP differ in subcellular distribution. MP(P81S)-GFP lacks specific sites of accumulation in protoplasts and, in epidermal cells, exclusively localizes to Pd. MP(P81S;T104I;R167K)-GFP, in contrast, in addition localizes to inclusion bodies and microtubules and thus exhibits a subcellular localization pattern that is similar, if not identical, to the pattern reported for wild-type MP-GFP. Since accumulation of MP to inclusion bodies is not required for function, these observations confirm a role for microtubules in TMV RNA cell-to-cell transport.  相似文献   

11.
The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.  相似文献   

12.
The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.  相似文献   

13.
The movement protein (MP) of tobacco mosaic virus (TMV) is essential for spread of the viral RNA genome from cell to cell. During infection, the MP associates with microtubules, and it has been proposed that the cytoskeleton transports the viral ribonucleoprotein complex from ER sites of synthesis to plasmodesmata through which infection spreads into adjacent cells. However, microtubule association of MP was observed in cells undergoing late infection rather than in cells undergoing early infection at the leading edge of expanding infection sites where virus RNA cell-to-cell spread occurs. Therefore, alternative roles for microtubules in virus infection have been proposed, including a role in MP degradation. To further investigate the role of microtubules in virus pathogenesis, we tested the efficiency of cell-to-cell spread of infection and microtubule association of the MP in response to changes in temperature. We show that the subcellular distribution of MP is temperature-dependent and that a higher efficiency of intercellular transport of virus RNA at elevated temperatures corresponds to an increased association of MP with microtubules early in infection.  相似文献   

14.
Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine‐scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement‐defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild‐type MP (GFP:MPwt) mainly co‐localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement‐defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.  相似文献   

15.
Grapevine fanleaf virus (GFLV) is one of a large class of plant viruses whose cell-to-cell transport involves the passage of virions through tubules composed of virus-encoded movement protein (MP). The tubules are embedded within modified plasmodesmata, but the mechanism of targeting of MP to these sites is unknown. To study intracellular GFLV MP trafficking, a green fluorescent protein-MP fusion (GFP:MP) was expressed in transgenic tobacco BY-2 suspension cells under the control of an inducible promoter. We show that GFP:MP is targeted preferentially to calreticulin-labeled foci within the youngest cross walls, where it assembles into tubules. During cell division, GFP:MP colocalizes in the cell plate with KNOLLE, a cytokinesis-specific syntaxin, and both proteins are linked physically, as shown by coimmunoprecipitation of the two proteins from the same microsomal fraction. In addition, treatment with various drugs has revealed that a functional secretory pathway, but not the cytoskeleton, is required for tubule formation. However, correct GFP:MP targeting to calreticulin-labeled foci seems to be cytoskeleton dependent. Finally, biochemical analyses have revealed that at least a fraction of the MP behaves as an intrinsic membrane protein. These findings support a model in which GFP:MP would be transported to specific sites via Golgi-derived vesicles along two different pathways: a microtubule-dependent pathway in normal cells and a microfilament-dependent default pathway when microtubules are depolymerized.  相似文献   

16.
Role of P30 in replication and spread of TMV   总被引:2,自引:1,他引:1  
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell–cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.  相似文献   

17.
18.
The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.  相似文献   

19.
20.
Gene I of cauliflower mosaic virus (CaMV) encodes a protein that is required for virus movement. The CaMV movement protein (MP) was used in a yeast 2-hybrid system to screen an Arabidopsis cDNA library for cDNAs encoding MP-interacting (MPI) proteins. Three different clones were found encoding proteins (MPI1, -2 and -7) that interact with the N-terminal third of the CaMV MP. The interaction in the 2-hybrid system between MPI7 and CaMV MP mutants correlated with the infectivity of the mutants. A non-infectious MP mutant, ER2A, with two amino acid changes in the N-terminal third of the MP failed to interact with MPI7, while an infectious second-site mutant, that differed from ER2A by only a single amino acid change, interacted in the 2-hybrid system. MPI7 is encoded by a member of a large, but diverse gene family in Arabidopsis. MPI7 is related in sequence, size and hydropathy profile to mammalian proteins (such as rat PRA1) described as a rab acceptor. The gene encoding MPI7 is expressed widely is Arabidopsis plants, and in transgenic plants the MPI7:GFP fusion protein is localized in the cytoplasm, concentrated in punctate spots. In protoplasts transfected with CFP:MP and MPI7:YFP, CFP:MP colocalized to some of the sites where MPI7:YFP is expressed. At these sites, fluorescence resonance energy transfer (FRET) between fluorophores was observed indicating an interaction in planta between the CaMV MP and MPI7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号