首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report an experimental setup and mathematical algorithm for determination of relative protein abundance from directly labeled native protein samples applied to an array of antibodies. The application of the proposed experimental system compensates internally at each array element for a number of deficiencies in array experiments such as differential labeling efficiency in dual color assay systems, differential solubility of protein molecules in dual color assay systems, and differential affinity of capture reagents toward proteins labeled with two different fluorescent dyes. This system offers full compensation for variable amounts of capture reagents on separate array structures, as well as limited compensation for nonspecific interactions between capture reagents and analytes. The proposed experimental strategy enables the use of a large number of capture reagents to develop a true multiplex analysis system that will yield complete relative protein abundance information in two biological systems.  相似文献   

2.
The increasing interest in systems biology has resulted in extensive experimental data describing networks of interactions (or associations) between molecules in metabolism, protein-protein interactions and gene regulation. Comparative analysis of these networks is central to understanding biological systems. We report a novel method (PHUNKEE: Pairing subgrapHs Using NetworK Environment Equivalence) by which similar subgraphs in a pair of networks can be identified. Like other methods, PHUNKEE explicitly considers the graphical form of the data and allows for gaps. However, it is novel in that it includes information about the context of the subgraph within the adjacent network. We also explore a new approach to quantifying the statistical significance of matching subgraphs. We report similar subgraphs in metabolic pathways and in protein-protein interaction networks. The most similar metabolic subgraphs were generally found to occur in processes central to all life, such as purine, pyrimidine and amino acid metabolism. The most similar pairs of subgraphs found in the protein-protein interaction networks of Drosophila melanogaster and Saccharomyces cerevisiae also include central processes such as cell division but, interestingly, also include protein sub-networks involved in pre-mRNA processing. The inclusion of network context information in the comparison of protein interaction networks increased the number of similar subgraphs found consisting of proteins involved in the same functional process. This could have implications for the prediction of protein function.  相似文献   

3.
Cho KI  Lee K  Lee KH  Kim D  Lee D 《Proteins》2006,65(3):593-606
In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of antibody-antigen complexes, the sign is somewhat ambiguous. From the evolutionary perspective, while protease-inhibitors and sig-naling proteins have optimized their interfaces to suit their biological functions, antibody-antigen interactions are the happenstance, implying that antibody-antigen complexes do not show distinctive interaction types. Persistent interaction types such as pi...pi, amide-carbonyl, and hydroxyl-carbonyl interaction, are also investigated. Analyzing the structural orientations of the pi...pi stacking interactions, we find that herringbone shape is a major configuration in transient protein-protein interfaces. This result is different from that of protein core, where parallel-displaced configurations are the major configuration. We also analyze overall trend of amide-carbonyl and hydroxyl-carbonyl interactions. It is noticeable that nearly 82% of the interfaces have at least one hydroxyl-carbonyl interactions.  相似文献   

4.
Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein-protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein-protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein-protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein-protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein-protein interactions in a dynamic context- and phosphorylation site-specific manner.  相似文献   

5.
6.
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.  相似文献   

7.
MOTIVATION: Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. RESULTS: We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.  相似文献   

8.
Transmembrane signaling systems relay information from the exterior to the interior of a cell, through a series of complex protein-protein interactions and second messenger cascades. One such system consists of the G-protein-coupled receptors, which interact with G proteins upon ligand binding, and in turn activate an effector molecule. The receptor is the first component in this signaling cascade and is subject to considerable regulation. Recent studies have shown that these regulatory events can occur at the levels of receptor protein modification and receptor gene expression. Interestingly, some of these processes appear to be mediated by the same second messenger systems that these receptors activate, which leads to various forms of positive and negative feedback regulation.  相似文献   

9.
10.
11.
Probabilistic inference of molecular networks from noisy data sources   总被引:1,自引:0,他引:1  
Information on molecular networks, such as networks of interacting proteins, comes from diverse sources that contain remarkable differences in distribution and quantity of errors. Here, we introduce a probabilistic model useful for predicting protein interactions from heterogeneous data sources. The model describes stochastic generation of protein-protein interaction networks with real-world properties, as well as generation of two heterogeneous sources of protein-interaction information: research results automatically extracted from the literature and yeast two-hybrid experiments. Based on the domain composition of proteins, we use the model to predict protein interactions for pairs of proteins for which no experimental data are available. We further explore the prediction limits, given experimental data that cover only part of the underlying protein networks. This approach can be extended naturally to include other types of biological data sources.  相似文献   

12.
Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage-specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for "neglected" human diseases. The method was assessed by (1) comparison to a set of known host-pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host-pathogen interactions. We present several specific predictions that warrant experimental follow-up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is complementary to experimental efforts in elucidating networks of host-pathogen protein interactions.  相似文献   

13.
Xue YN 《生理科学进展》2001,32(3):229-232
近年来,一些不依赖于转录因子活性的新型双杂交系统相继建立,如分离的泛素系统、蛋白质片段互补分析、阻遏物重构分析和SOS恢复系统等。同利用转录因子活性的酵母双杂交系统相似,这些方法也利用了一些活性蛋白的结构与功能特点来研究蛋白质间相互作用,这些活性蛋白不是转录因子,但也可在结构上进行分离可通过重构使其生物活性得以恢复。由于这些新型双杂交系统的各自特点,使得它们成为酵母双杂交系统的有益补充和研究蛋白质间相互作用的有力工具。  相似文献   

14.
15.

Background

Cellular activities are governed by the physical and the functional interactions among several proteins involved in various biological pathways. With the availability of sequenced genomes and high-throughput experimental data one can identify genome-wide protein-protein interactions using various computational techniques. Comparative assessments of these techniques in predicting protein interactions have been frequently reported in the literature but not their ability to elucidate a particular biological pathway.

Methods

Towards the goal of understanding the prediction capabilities of interactions among the specific biological pathway proteins, we report the analyses of 14 biological pathways of Escherichia coli catalogued in KEGG database using five protein-protein functional linkage prediction methods. These methods are phylogenetic profiling, gene neighborhood, co-presence of orthologous genes in the same gene clusters, a mirrortree variant, and expression similarity.

Conclusions

Our results reveal that the prediction of metabolic pathway protein interactions continues to be a challenging task for all methods which possibly reflect flexible/independent evolutionary histories of these proteins. These methods have predicted functional associations of proteins involved in amino acids, nucleotide, glycans and vitamins & co-factors pathways slightly better than the random performance on carbohydrate, lipid and energy metabolism. We also make similar observations for interactions involved among the environmental information processing proteins. On the contrary, genetic information processing or specialized processes such as motility related protein-protein linkages that occur in the subset of organisms are predicted with comparable accuracy. Metabolic pathways are best predicted by using neighborhood of orthologous genes whereas phyletic pattern is good enough to reconstruct central dogma pathway protein interactions. We have also shown that the effective use of a particular prediction method depends on the pathway under investigation. In case one is not focused on specific pathway, gene expression similarity method is the best option.  相似文献   

16.

Background  

Large fractions of all fully sequenced genomes code for proteins of unknown function. Annotating these proteins of unknown function remains a critical bottleneck for systems biology and is crucial to understanding the biological relevance of genome-wide changes in mRNA and protein expression, protein-protein and protein-DNA interactions. The work reported here demonstrates that de novo structure prediction is now a viable option for providing general function information for many proteins of unknown function.  相似文献   

17.
A combined yeast/bacteria two-hybrid system: development and evaluation   总被引:3,自引:0,他引:3  
Two-hybrid screening is a standard method used to identify and characterize protein-protein interactions and has become an integral component of many proteomic investigations. The two-hybrid system was initially developed using yeast as a host organism. However, bacterial two-hybrid systems have also become common laboratory tools and are preferred in some circumstances, although yeast and bacterial two-hybrid systems have never been directly compared. We describe here the development of a unified yeast and bacterial two-hybrid system in which a single bait expression plasmid is used in both organismal milieus. We use a series of leucine zipper fusion proteins of known affinities to compare interaction detection using both systems. Although both two-hybrid systems detected interactions within a comparable range of interaction affinities, each demonstrated unique advantages. The yeast system produced quantitative readout over a greater dynamic range than that observed with bacteria. However, the phenomenon of "autoactivation" by baits was less of a problem in the bacterial system than in the yeast. Both systems identified physiological interactors for a library screen with a cI-Ras test bait; however, non-identical interactors were obtained in yeast and bacterial screens. The ability to rapidly shift between yeast and bacterial systems provided by these new reagents should provide a marked advantage for two-hybrid investigations. In addition, the modified expression vectors we describe in this report should be useful for any application requiring facile expression of a protein of interest in both yeast and bacteria.  相似文献   

18.
Membrane protein-protein interactions are important for regulation, targeting, and activity of proteins in membranes but are difficult to detect and analyse. This review covers current approaches to studying membrane protein interactions. In addition to standard biochemical and genetic techniques, the classic yeast nuclear two-hybrid system has been highly successful in identification and characterization of soluble protein-protein interactions. However, classic yeast two-hybrid assays do not work for membrane proteins because such yeast-based interactions must occur in the nucleus. Here, we highlight recent advances in yeast systems for the detection and characterization of eukaryote membrane protein-protein interactions. We discuss these implications for drug screening and discovery.  相似文献   

19.
The interactions between proteins allow the cell's life. A number of experimental, genome-wide, high-throughput studies have been devoted to the determination of protein-protein interactions and the consequent interaction networks. Here, the bioinformatics methods dealing with protein-protein interactions and interaction network are overviewed. 1. Interaction databases developed to collect and annotate this immense amount of data; 2. Automated data mining techniques developed to extract information about interactions from the published literature; 3. Computational methods to assess the experimental results developed as a consequence of the finding that the results of high-throughput methods are rather inaccurate; 4. Exploitation of the information provided by protein interaction networks in order to predict functional features of the proteins; and 5. Prediction of protein-protein interactions.  相似文献   

20.
Given the importance of protein-protein interactions for nearly all biological processes, the design of protein affinity reagents for use in research, diagnosis or therapy is an important endeavor. Engineered proteins would ideally have high specificities for their intended targets, but achieving interaction specificity by design can be challenging. There are two major approaches to protein design or redesign. Most commonly, proteins and peptides are engineered using experimental library screening and/or in vitro evolution. An alternative approach involves using protein structure and computational modeling to rationally choose sequences predicted to have desirable properties. Computational design has successfully produced novel proteins with enhanced stability, desired interactions and enzymatic function. Here we review the strengths and limitations of experimental library screening and computational structure-based design, giving examples where these methods have been applied to designing protein interaction specificity. We highlight recent studies that demonstrate strategies for combining computational modeling with library screening. The computational methods provide focused libraries predicted to be enriched in sequences with the properties of interest. Such integrated approaches represent a promising way to increase the efficiency of protein design and to engineer complex functionality such as interaction specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号