首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary No quantitative information is available regarding the salt tolerance of eggplant (Solanum melongena L.). The present study was conducted over a two-year period in small field plots irrigated by drip, where irrigation frequency was also a variable. The salt tolerance function may be described by the equation Yr=100–6.9 (ECe−1.1), where Yr=relative yield of fruit, ECe=the mean integrated electrical conductivity at the soil saturation extract, 1.1 dS/m=threshold salinity. Salt was distributed reasonably uniformly within the root zone.  相似文献   

2.
RAPD analysis was carried out on 52 accessions of Solanum melongena (eggplant) and related weedy forms known as insanum. Twenty-two primers amplified 130 fragments. Solanum melongena exhibited 117 of the fragments, all of which were also present in insanum. Insanum displayed an additional 13 fragments not found in S. melongena. Overall, the insanum accessions were more diverse than those of S. melongena. The calculated similarity between them was 0.947. The RAPD results were closely concordant with the results of an electrophoretic isozyme survey performed on the same accessions. The concordance of the results shows that even though S. melongena and insanum are highly diverse morphologically, it is no longer appropriate to distinguish them taxonomically.  相似文献   

3.
Summary Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 105/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46–48 (expected 2n=4x=48) and pollen viability was 5%–70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.Michigan Agricultural Experiment Station Journal Article No. 12545  相似文献   

4.
Enzyme electrophoretic studies were made in cultivated Solanum melongena L. (eggplant) and similar wild and weedy forms, several of which have been thought to be different species/taxa. Twenty-nine accessions of S. melongena, 33 accessions of weedy forms (referred to as insanum) and 2 accessions of wild forms (referred to as incanum) were surveyed for 29 isozyme loci. In S. melongena, 22 of the 29 loci were monomorphic, and nearly all of its genes were either also monomorphic or in similar frequencies in insanum and incanum. The results demonstrate that the three taxa have a very close genetic relationship. The high genetic identities between them (0.913–0.967) suggests that they are conspecific even though they include extensive morphological diversity.  相似文献   

5.
Plants of Solanum melongena were propagated under in vitro conditions (27°C, 12h/day illumination at 62 Em-2s-1, 60% humidity) by subculture of terminal and lateral cuttings on MS medium +20 gl-1 sucrose + Morel and Wetmore vitamins at 1/8 strength and 7 gl-1 agar. Lamina, petioles and stems of 3-week-old cuttings were used as sources of protoplasts. The best mean yield of protoplasts was obtained from the lamina with 9,030×103 protoplasts per gram of tissue. Petioles and stems yielded respectively 3,144×103 and 1,220.4×103 protoplasts per gram of tissue. first division of petiole and stem protoplasts occurred within 48 h, while lamina protoplasts underwent division after 3–4 days of culture in KM8p medium +2,4-D(0.2 gl-1) + zeatin (0.5 mgl-1) + NAA (1 mgl-1) and 0.35M glucose as osmoticum. The highest percentage of dividing cells was obtained from petiole material, estimated at 33.4% after 7 days, compared to 23.8% and 19.4% respectively for stem and lamina protoplasts. When BAP replaced zeatin in KM8p, the division percentage of lamina protoplasts was reduced to 10–15%. When transferred to regeneration medium, all calli derived from KM8p + zeatin formed deep-green spots identified as embryo-like structures, while only few calli from KM8p + BAP underwent shoot organogenesis without formation of green spots. Some of embryo-like structure developed into plantlets with a frequency of 1–2 plantlets per callus especially on MS medium + zeatin (4 mgl-1) + IAA (0.2 mgl-1). Maintaining protoplast-derived calli on MS + BAP (0.5 mgl-1) + NAA (0.5 mgl-1) for more than 3 weeks resulted in a decrease and loss of cell totipotency.Abbreviations (IAA) Indol-3-acetic acid - (2,4-D) 2,4-dichlorophenoxyacetic acid - (NAA) naphthale-neacetic - (BAP) 6-benzylaminopurine - (MS) Murashige and Skoog basal medium - (CPW) Cell and Protoplast Washing solution  相似文献   

6.
In the present work, the bacterial mannitol-1-phosphodehydrogenase(mtlD) gene was introduced into eggplant(Solanummelongena L.) by Agrobacteriumtumefaciens-mediated transformation. Several transformants weregenerated and the transgene integration was confirmed by PCR, dot blot andSouthern blot analysis. Transgenic lines of T0 and T1generations were examined for tolerance to NaCl-induced salt stress,polyethylene glycol-mediated drought and chilling stress under bothinvitro and in vivo growth conditions. Aconsiderable proportions of transgenic seeds germinated and seedlings grew wellon 200 mM salt-amended MS basal medium, whereas seeds ofuntransformed control plants failed to germinate. Further, leaf explants fromthe transgenics could grow and showed signs of shoot regeneration onsalt-amended MS regeneration medium, whereas wild type did not respond, and infact the explants showed necrosis and loss of chlorophyll after about one week.The transgenic leaves could also withstand desiccation, and transgenics couldgrow well under chilling stress, and hydroponic conditions with salt stress ascompared to wild type plants. Thus, the transgenic lines were found to betolerant against osmotic stress induced by salt, drought and chilling stress.The morphology of the transgenic plants was normal as controls, but thechlorophyll content was higher in some of the lines. These observations suggestthat mtlD gene can impart abiotic stress tolerance ineggplant.  相似文献   

7.
8.
The wilt diseases caused by Verticillium dahliae and Fusarium oxysporum are the major diseases of eggplant (Solanum melongena L.). In order to generate transgenic resistance against the wilt diseases, Agrobacterium-mediated gene transfer was performed to introduce alfalfa glucanase gene encoding an acidic glucanase into eggplant using neomycin phosphotransferase (npt-II) gene as a plant selection marker. The transgene integration into eggplant genome was confirmed by Polymerase chain reaction (PCR) and Southern blot analysis and transgene expression by the glucanase activity and western blot analysis. The selected transgenic lines were challenged with V. dahliae and F. oxysporum under in vitro and in vivo growth conditions, and transgenic lines showed enhanced resistance against the wilt-causing fungi with a delay of 5–7 days in the disease development as compared to wild-type plants.  相似文献   

9.
Summary Kanamycin resistant plants of Solarium melongena L. (eggplant) cv. Picentia were obtained following the cocultivation of leaf explants with Agrobacterium tumefaciens. A disarmed binary vector system containing the neomycin phosphotransferase (NPTII) gene as the selectable marker and chloramphenicol acetyltransferase (CAT) as a reporter gene was utilized. In vitro grown plants were used as sources of explants to produce transgenic plants on selective medium containing 100 mg/l kanamycin. The transformation and expression of the foreign genes was confirmed by DNA hybridizations, leaf disc assays, and by measuring NPTII and CAT enzyme activities. This technique is simple, rapid, efficient, and transgenic eggplants of this commercial cultivar have been transferred to soil where they have flowered and set seed.Abbreviations CAT chloramphenicol acetyltransferase - MS Murashige and Skoog - NPTII neomycin phosphotransferase - NOS nopaline synthase - ZEA zeatin  相似文献   

10.
Greenhouse experiments were conducted in two years (1993–1994) with eggplants supplied with 1, 2 or 4 mM NH4NO3 as the N source in order to determine its influence on molybdenum (Mo) and nitrate (NO3 ) content in leaf blades, petioles, and fruits as well as leaf nitrate reductase (NR) activity. The results reveal that 2 and 4 mM NH4NO3 altered shoot Mo distribution and thus affecting the NR activity.  相似文献   

11.
Summary Eggplant (Solanum melongena L. cv. Violetta lunga 2) cotyledon expiants grown on hormone-free medium (controls) or on medium containing either naphthaleneacetic acid alone (root forming) or in combination with zeatin riboside (shoot forming) showed minor differences in free polyamine titres during culture. In contrast, conjugated polyamines (particularly those in the trichloroacetic acid-soluble fraction) accumulated only in hormonetreated explants, but not in controls. The extent and the temporal changes in soluble-conjugate levels differed between root-forming and shoot-forming expiants; in the former, accumulation began earlier (within 1 day of culture) and reached the highest levels. In both organogenic programmes, maximum conjugate accumulation occurred just before and during organ emergence. Adventitious roots and shoots were formed along the cut surfaces. The regions closest to these (borders) displayed a significantly higher ratio of conjugated to free spermidine and/or putrescine than the nonorganogenic regions (centres) of the explant. Ornithine decarboxylase activity was higher than arginine decarboxylase activity both in control and hormone-treated explants. However, both activities increased markedly on day 2 of culture in the presence of hormones. Thereafter ornithine decarboxylase activity remained high in shoot-forming explants, but not in root-forming ones. Putrescine oxidising activity was also enhanced by exogenously supplied hormones starting from day 4 of culture. This activity remained high up to day 12 in the presence of auxin plus cytokinin, whereas it peaked on day 6 in auxin-treated explants. Spermidine oxidising activity was the only enzyme activity which was consistently higher in controls than in hormone-treated tissue. Differences between the two organogenic programmes with respect to temporal changes in polyamine content, and putrescine biosynthetic and oxidative activities are discussed in relation to the timing of organ formation. The latter was monitored both histologically and macroscopically.Abbreviations PA polyamine - Put putrescine - Spd spermidine - Spm spermine - NAA naphthaleneacetic acid - ZR zeatin riboside - TCA trichloroacetic acid - ODC ornithine decarboxylase - ADC arginine decarboxylase  相似文献   

12.
Summary Embryogenic callus was formed from several cultivars of cotton (Gossypium hirsutum L.) when sections of hypocotyl and cotyledon were cultured on medium supplemented with 5 mg/liter 6-(γ, γ-dimethylallyl-amino)-purine (2iP) and 0.1 mg/liter α-naphthaleneacetic acid (NAA) for callus initiation and proliferation, and subcultured on medium supplemented with 5 mg/liter NAA and 0.1 to 1 mg/liter 2iP for embryogenic callus induction. It seems that a high 2iP:auxin ratio is preferred for callus initiation and proliferation, but should be exchanged with a higher NAA:cytokinin ratio before differentiation will occur. Embryogenic calluses were recovered at a frequency of 2 to 85% depending on the cultivar used. Coker cultivars produced embryogenic callus faster and at higher frequencies than other cultivars. Embryogenic callus produced somatic embryos on phytohormone-free medium. This medium was used to maintain and proliferate embryogenic callus for a perid of 18 to 24 mo. Somatic embryos were converted to plants on a lower ionic strength medium supplemented with 0.1 mg/liter gibberellic acid (GA3) and 0.01 mg/liter NAA. Glucose was the only carbohydrate used through all phases of tissue culture and was much better than sucrose, on which phenolic production was very high. High temperature (30° C) and low light intensity (9 μE · m−2 · s−1) were optimal conditions for callus initiation, embryogenic callus induction, and maintenance, whereas lower temperature (25° C) and high light intensity (90 μE · m−2 s−1) were the optimal conditions for somatic embryo maturation, germination, and plantlet development. Plants could be regenerated within 10 to 12 wk in Cokers or 7 to 8 mo. in others.  相似文献   

13.
Summary Plants were regenerated from petiole calli of interspecific hybrids of Solanum tuberosum x S. berthaultii, an insect-resistant wild species. Callus culture was used to generate genetic changes to overcome the restricted recombination between the two genomes. Two plants out of 58 (3.5%) from calli of hybrid J114-1 showed stable and heritable differences from the hybrid over two cycles of evaluations in the field. Replicated trials were conducted in 1987 and 1988, using two populations of plants propagated by nodal cuttings from the original regenerates maintained in vitro. One regenerate showed insect resistance and increased marketable yield (approximately two fold) in the field. The other had higher levels of phenolic exudate in one of the two types of foliar trichomes associated with the insect resistance mechanism. Some desirable changes were discernible only in sexual progeny of regenerates, not in the regenerates themselves. In a backcross to S. tuberosum, 7 of 14 (50%) regenerates from hybrid F743-4 showed more progeny (up to 15-fold) with improved trichome traits and horticultural characteristics than the original hybrid. The variations were not associated with changes in ploidy. Fifteen plants obtained from these crosses are currently being incorporated into breeding lines. These results suggest that a period of callus culture followed by plant regeneration may aid in the introgression of desirable traits from wild species into crop plants.  相似文献   

14.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

15.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

16.
Summary Mesophyll protoplasts were isolated from axenic shoot cultures ofSolanum melongena by the one-step enzymatic method. Of the different media employed for the culture of protoplasts, a medium modified fromKao andMichayluk (1975) supported sustained mitotic cycles most effectively. Organogenesis from protoplast-derived callus was achieved on transfer toMurashige andSkoog'S (1962) medium supplemented with an appropriate auxin and a cytokinin.  相似文献   

17.
Heterotrophic and autotrophic culture in agar and in polyurethane foam, the latter used as an alternative tissue support to agar, resulted in potato microplants with different in vitro morphologies. The microplants were visually characterised in terms of their relative developmental maturity, by comparing the respective leaf shapes in vitro with ontogenetic differences in leaf shape in glasshouse-grown potato plants. Cytosine methylation in the DNA of microplants of the different morphologies was determined using a method based on the AFLP technique but employing methylation-sensitive restriction enzymes (MSAP analysis) to test the hypothesis that DNA methylation could be used to characterise differences in microplant development in vitro. In three of the four treatments there was a good correlation between the visual assessment of relative morphological maturity and DNA base methylation levels. In these microplants there was increased DNA methylation in the leaves with mature leaf morphology represented by a decreased number of restriction fragments. The fourth in vitro morphology had the most juvenile leaf shape but did not have the predicted level of DNA methylation, having a relatively low number of restriction fragments. Subtraction analysis was used to discriminate the fragments that were unique to the juvenile and mature in vivo leaf morphologies. Comparison of the fragment patterns from the microplants with the latter reference profiles, confirmed the relationship with the total DNA methylation as detected by MSAP analysis, that is, the number of common fragments with the juvenile or mature in vivo leaf profiles, respectively. However, none of the fragment profiles, while sharing some common bands at random, was identical to any other; or to that of either the juvenile or mature in vivo leaf. The anomalous relationship of the microplants with most juvenile leaf shape and highest DNA methylation was confirmed. The measurement of DNA methylation in in vitro plants is discussed in the context of the development of a method to assess the quality of microplants produced by different in vitro protocols.  相似文献   

18.
Plant Cell, Tissue and Organ Culture (PCTOC) - Sorghum bicolor (L.) Moench, plants were regenerated from 4 to 5 month old callus cultures originally derived from seedling explants. Somaclonal...  相似文献   

19.
Oleria onega agarista Felder and Felder and Oleria onega ssp. nov. are two Ithomiinae subspecies from north-eastern Peru, that differ for some morphological and behavioural traits. Two contact zones are known near the town of Tarapoto: Ahuashiyacu, where both subspecies cohabit but do not seem to hybridise, and Estero (near the village of Shapaja), where they apparently hybridise. Genetic differences between the two subspecies and between populations were investigated with random amplified polymorphic DNA (RAPD) markers. Both Cluster and Principal Coordinates Analyses (CCoA and PCoA) performed using these data, provided a clear but weak discrimination between the two subspecies. Genetic diversity is much higher within the populations than between them. Moreover, the geographically more distant populations are grouped together by the genetic data. Morphological traits on the wing patterns of the hybrids are intermediary between the two butterflies subspecies, while RAPDs data place them closer to O. onega agarista than to O. onega ssp. The individuals of the Ahuashiyacu population are clearly separated into two groups, those of O. onega ssp. and O. onega agarista, by both morphology and RAPDs data. Moreover, none of those individuals show RAPD similarity with the hybrids, suggesting that hybridisation has not occurred in this population.  相似文献   

20.
A cytological and molecular analysis was performed to assess the genetic uniformity and true-to-type character of plants regenerated from 20 week-old embryogenic suspension cultures of meadow fescue (Festuca pratensis Huds.), and compared to protoplastderived plants obtained from the same cell suspension. Cytological variation was not observed in a representative sample of plants regenerated directly from the embryogenic suspensions and from protoplasts isolated therefrom. Similarly, no restriction fragment length polymorphisms (RFLPs) were detected in the mitochondrial, plastid and nuclear genomes in the plants analyzed. Randomly amplified polymorphic DNA markers (RAPDs) have been used to characterise molecularly a set of mature meadow fescue plants regenerated from these in vitro cultures. RAPD markers using 18 different short oligonucleotide primers of arbitrary nucleotide sequence in combination with polymerase chain reaction (PCR) allowed the detection of pre-existing polymorphisms in the donor genotypes, but failed to reveal newly generated variation in the protoplast-derived plants compared to their equivalent suspensionculture regenerated materials.The genetic stability of meadow fescue plants regenerated from suspension cultures and protoplasts isolated therefrom and its implications on gene transfer technology for this species are discussed.Abbreviations PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号