首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Twenty arthroconidial yeasts were isolated from the digestive tract of basidiome-feeding beetles and lepidopteran larvae. All of the yeasts reproduced only asexually by arthroconidia and some by endo- or blastoconidia as well. Based on the comparisons of sequences in ribosomal RNA genes and other taxonomic characteristics, the yeasts were identified as three unknown Geotrichum species. The three new species are described as Geotrichum carabidarum (NRRL Y-27727T), G. histeridarum (NRRL Y-27729T), and G. cucujoidarum (NRRL Y-27731T). Phylogenetic analyses from ribosomal DNA sequences showed that members of the genus Geotrichum and related arthroconidial yeast taxa were divided into two major clades: (1) Dipodascus and Galactomyces with Geotrichum anamorphs including all the new species; and (2) Magnusiomyces with Saprochaete anamorphs. G. cucujoidarum formed a subclade with G. fermentans and Geotrichum sp. Y-5419, while the two closely related species, G. carabidarum and G. histeridarum, represent a new basal subclade in the clade of Geotrichum and its teleomorphs.  相似文献   

2.
A multilocus sequence analysis based on partial gyrB, mreB, rpoD and pyrH genes was undertaken with 61 putative Vibrio mediterranei/V. shilonii strains from different hosts (mussels, oysters, clams, coral, fish and plankton) or habitat (seawater and sediment) and geographical origins (Mediterranean, Atlantic and Pacific). A consistent grouping was obtained with individual and concatenated gene sequences, and the clade, comprising 54 strains, was split into three subclades by all methods: subclade A (40 strains, including AK1, the former type strain of Vibrio shilonii), subclade B (8 strains) corresponding to the species V. mediterranei, and subclade C (six strains) representing a new species, V. thalassae sp. nov., with strain MD16T (=CECT 8203T = KCTC 32373T) as the proposed type strain.  相似文献   

3.
We describe the species Metschnikowia bowlesiae sp. nov. based on the recovery of six isolates from Hawaii and Belize. The species belongs to the Metschnikowia arizonensis subclade of the large-spored Metschnikowia clade. The isolates are haploid and heterothallic. Both Hawaiian strains had the mating type h + and the Belizean strains were h ?. Paraphyletic species structures observed in some ribosomal DNA sequence analyses suggest that M. bowlesiae sp. nov. might represent an intermediate stage in a succession of peripatric speciation events from Metschnikowia dekortorum to Metschnikowia similis and might even hybridize with these species. The type of M. bowlesiae sp. nov. is strain UWOPS 04-243x5 (CBS 12940T, NRRL Y-63671) and the allotype is strain UWOPS 12-619.1 (CBS 12939A, NRRL Y-63670).  相似文献   

4.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

5.
《Mycological Research》2006,110(3):346-356
Fourteen yeast isolates belonging to the Metschnikowia clade were isolated from the digestive tracts of lacewings (Neuroptera: Chrysopidae), soldier beetles and leaf beetles (Coleoptera: Cantharidae and Chrysomelidae), and a caddisfly (Trichoptera: Hydropsychidae). The insect hosts were associated with sugary substances of plants, a typical habitat for yeasts in this clade. Based on DNA sequence comparisons and phenetic characters, the yeasts were identified as Candida picachoensis, Candida pimensis, and four undescribed taxa. Among the undescribed taxa, three yeasts were distinguished from one another and from other described taxa by nucleotide differences in the ribosomal DNA repeat, which were sufficient to consider them as new species. Two of the novel yeast species are described as Metschnikowia noctiluminum (NRRL Y-27753T) and M. corniflorae spp. nov. (NRRL Y-27750T) based in part on production of needle-shaped ascospores, which are found in most Metschnikowia species. Sexual reproduction was not observed in the third new yeast, Candida chrysomelidarum sp. nov. (NRRL Y-27749T). A fourth isolate, NRRL Y-27752, was not significantly distinct from Metschnikowia viticola and Candida kofuensis to be described as a new species. Phylogenetic analysis of the D1/D2 loop sequences placed M. noctiluminum within the M. viticola clade, while C. chrysomelidarum was a sister taxon of Candida rancensis. Metschnikowia corniflorae was phylogenetically distinct from other new species and fell outside of the large-spored Metschnikowia group.  相似文献   

6.
Two novel ascomycetous yeast species, Saturnispora serradocipensis and Saturnispora gosingensis, were isolated from leaf detritus in a tropical stream of Southeastern Brazil and a mushroom collected in Taiwan, respectively. Analysis of the D1/D2 domains of the large-subunit of the rRNA gene of these strains showed that these species are related to Saturnispora hagleri, their closest relative. Saturnispora serradocipensis and S. gosingensis differed from S. hagleri, respectively, by seven nucleotide substitutions and two indels and three nucleotide substitutions and three indels in D1/D2 rRNA sequences. The two new species differ from each another by four nucleotide substitutions and one indel in D1/D2 rRNA sequences. However, the ITS sequences of S. serradocipensis, S. gosingensis and S. hagleri were quite divergent, showing that they are genetically separate species. The type strain of S. serradocipensis is UFMG-DC-198T (=CBS 11756T = NRRL Y-48717T), and of S. gosingensis GA4M05T is (CBS 11755T = NRRL Y-48718T).  相似文献   

7.
Three new anamorphic ascomycetous yeasts are described: Candida anglica (type strain NRRL Y-27079, CBS 4262), Candida cidri (type strain NRRL Y-27078, CBS 4241), and Candida pomicola (type strain NRRL Y-27083, CBS 4242). These three species were isolated from cider produced in the United Kingdom, and their identification was determined from unique nucleotide sequences in the species-specific D1/D2 domain of large subunit (26S) ribosomal DNA. Phylogenetic analysis of D1/D2 sequences placed C. anglica near Candida fragi, C. cidri near Pichia capsulata, and C. pomicola in the Pichia holstii clade.  相似文献   

8.
For economical lignocellulose-to-ethanol production, a desirable biocatalyst should tolerate inhibitors derived from preteatment of lignocellulose and be able to utilize heterogeneous biomass sugars of hexoses and pentoses. Previously, we developed an inhibitor-tolerant Saccharomyces cerevisiae strain NRRL Y-50049 that is able to in situ detoxify common aldehyde inhibitors such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF). In this study, we genetically engineered Y-50049 to enable and enhance its xylose utilization capability. A codon-optimized xylose isomerase gene for yeast (YXI) was synthesized and introduced into a defined chromosomal locus of Y-50049. Two newly identified xylose transport related genes XUT4 and XUT6, and previously reported xylulokinase gene (XKS1), and xylitol dehydrogenase gene (XYL2) from Scheffersomyces stipitis were also engineered into the yeast resulting in strain NRRL Y-50463. The engineered strain was able to grow on xylose as sole carbon source and a minimum ethanol production of 38.6?g?l?1 was obtained in an anaerobic fermentation on mixed sugars of glucose and xylose in the presence of furfural and HMF.  相似文献   

9.
A novel actinomycete, designated strain NEAU-ycm1T, was isolated from an edible Chinese black ant (Polyrhachis vicina Roger) and characterized with a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence show that the novel isolate belongs to the genus Streptomyces and forms a separate subclade. The closest phylogenetic relatives were identified as the type strains of Streptomyces intermedius NBRC 13049T (97.74 %), Streptomyces aureoverticillatus NRRL B-3326T (97.69 %), Streptomyces rutgersensis NBRC 12819T (97.68 %), Streptomyces gougerotii NBRC 3198T (97.68 %) and Streptomyces diastaticus subsp. diastaticus NBRC 3714T (97.68 %). Similarities to other type strains of the genus Streptomyces were lower than 97.55 %. A comparison between strain NEAU-ycm1T and the closest related Streptomyces type strains revealed that it is different from them in morphological, physiological and biochemical characteristics. Therefore, it is proposed that NEAU-ycm1T (=CGMCC 4.7094T = DSM 42102T) represents a novel species of the genus of Streptomyces, for which the name Streptomyces polyrhachii sp. nov. is proposed.  相似文献   

10.
A Streptomyces strain isolated from a hyper-arid Atacama Desert soil was characterised using a polyphasic taxonomic approach. The strain, designated C2T, had chemical and morphological properties typical of the genus Streptomyces. The isolate formed a branch in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces chromofuscus and was also loosely related to Streptomyces fragilis NRRL 2424T. DNA:DNA relatedness values between the isolate and its two phylogenetic neighbours showed that it formed a distinct genomic species. The strain was readily distinguished from these organisms using a combination of morphological and phenotypic data. Based on the genotypic and phenotypic results, isolate C2T represents a novel species in the genus Streptomyces, for which the name Streptomyces bullii sp. nov. is proposed. The type strain is C2T (=CGMCC 4.7019T = KACC 15426T).  相似文献   

11.

Background

Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species.

Methodology/Principal Findings

The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts.

Conclusions/Significance

In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364T  =  DBVPG 4489T), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20T  =  CBS 12527T  =  ATCC MYA-4876T), Bandoniozyma complexa sp. nov. (CBS 11570T  =  ATCC MYA-4603T  =  MA28aT), Bandoniozyma fermentans sp. nov. (CBS 12399T  =  NU7M71T  =  BCRC 23267T), Bandoniozyma glucofermentans sp. nov. (CBS 10381T  =  NRRL Y-48076T  =  ATCC MYA-4760T  =  BG 02-7-15-015A-1-1T), Bandoniozyma tunnelae sp. nov. (CBS 8024T  =  DBVPG 7000T), and Bandoniozyma visegradensis sp. nov. (CBS 12505T  =  NRRL Y-48783T  =  NCAIM Y.01952T).  相似文献   

12.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

13.
Eleven yeast strains representing two hitherto undescribed species were isolated from different kinds of meat samples in Hungary and one from the sediment of a tropical freshwater river in Southeastern Brazil. The analysis of the sequences of their large subunit rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) regions placed the two new species in the Yarrowia clade. Some of the seven strains representing the first new species can mate and give rise to asci and form ascospores embedded in capsular material, which qualifies it as the third teleomorph species of the Yarrowia clade. The name Yarrowia porcina sp. nov. (type strain: NCAIM Y.02100T = CBS 12935T = NRRL Y-63669T, allotype strain UFMG-RD131A = CBS 12932A) is proposed for this new yeast species, which, based on physiological characters, is indistinguishable from Yarrowia lipolytica and some other species of the genus. Considerable intraspecific variability was detected among the sequences of the large subunit rRNA gene D1/D2 domains of the seven strains. The variability among the D1/D2 sequences exceeded the divergence observed among the ITS sequences and in some cases more than 1 % substitution among the D1/D2 sequences was detected. The conspecificity of these strains was supported by the low (0–3 substitutions) sequence divergence among their ITS sequences, the result of a parsimony network analysis utilizing the concatenated ITS and D1/D2 sequences and also by the fingerprint patterns generated by microsatellite primed PCR. No ascospore formation was observed in the group of the other five strains representing the second new species. These strains shared identical D1/D2 and ITS sequences. Yarrowia bubula f.a., sp. nov. (type strain: NCAIM Y.01998T = CBS 12934T = NRRL Y-63668T) is proposed to accommodate these strains.  相似文献   

14.
A novel actinomycete strain, designated TRM 49605T, was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605T to the genus Streptomyces. Strain TRM 49605T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815T (98.62 %), Streptomyces flavovariabilis NRRL B-16367T (98.45 %) and Streptomyces variegatus NRRL B-16380T (98.45 %). Whole cell hydrolysates of strain TRM 49605T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605T were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA–DNA relatedness between strain TRM 49605T and the phylogenetically related strain S. roseolilacinus NBRC 12815T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605T (=CCTCC AA2015026T = KCTC 39666T) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.  相似文献   

15.
Four ascosporulating strains of an undescribed methanol-assimilating yeast species were isolated from forest habitats in Hungary. Three were recovered from rotten wood and one from leaves of a sessile oak (Quercus petraea). An additional isolate of the undescribed species sharing similar phenotypic characters with the above-noted strains was recovered from the gut of an unidentified beetle collected from under the bark of a coniferous tree in Bulgaria. A closely related, but somewhat divergent strain was recovered from insect frass in a Ponderosa pine (Pinus ponderosa) collected in New Mexico, USA. Analysis of the D1/D2 sequences of the LSU rRNA gene placed the new species in the Ogataea clade. The ITS and the D1/D2 LSU sequences of the rRNA gene repeats were compared for the above-noted strains and that of the type strain of Ogataea zsoltii, the closest neighbour among currently recognized Ogataea species. Their relatedness was investigated by parsimony network analysis as well. As a result of the sequence analysis, it was concluded that the six strains isolated from tree associated habitats represent a single new yeast species. Ogataea saltuana sp. nov. is proposed to accommodate these strains. The type strain NCAIM Y.01833T (CBS 10795T, NRRL Y-48448T) was recovered from rotten wood of Scotch pine (Pinus silvestris) in Hungary. The GenBank accession number for the D1/D2 domain nuclear large subunit rRNA gene sequence of strain NCAIM Y.01833T (CBS 10795T, NRRL Y-48448T) is EU327033. The MycoBank number of the new species is MB 519966.  相似文献   

16.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

17.
A new yeast species, Candida gelsemii, is described to accommodate three isolates recovered in Georgia, USA, from the toxic nectar of the Carolina jessamine (Gelsemium sempervirens). The species resembles other members of the Metschnikowiaceae clade that have been recovered from nectar, but differs in a number of morphological and physiological characteristics. Analysis of rDNA sequences places the new species well into the clade, but in a basal position with respect to a group of Metschnikowia and Candida species known to occur in association with nectars and bees, as well as marine invertebrates. The type is strain UWOPS 06–24.1T (CBS 10509T, NRRL Y-48212T.  相似文献   

18.
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. Analysis of 16S rRNA gene sequences showed that strain C34T formed a distinct phyletic line in the Streptomyces gene tree that was very loosely associated with the type strains of several Streptomyces species. Multilocus sequence analysis based on five house-keeping gene alleles underpinned the separation of strain C34T from all of its nearest phylogenetic neighbours, apart from Streptomyces chiangmaiensis TA-1T and Streptomyces hyderabadensis OU-40T which are not currently in the MLSA database. Strain C34T was distinguished readily from the S. chiangmaiensis and S. hyderabadensis strains by using a combination of cultural and phenotypic data. Consequently, strain C34T is considered to represent a new species of the genus Streptomyces for which the name Streptomyces leeuwenhoekii sp. nov. is proposed. The type strain is C34T (= DSM 42122T = NRRL B-24963T). Analysis of the whole-genome sequence of S. leeuwenhoekii, with 6,780 predicted open reading frames and a total genome size of around 7.86 Mb, revealed a high potential for natural product biosynthesis.  相似文献   

19.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterial strain, designated 16F3Y-2T, was isolated from the Han River, South Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 16F3Y-2T belonged to the family Cytophagaceae in the phylum Bacteroidetes and was most closely related to ‘Hymenobacter terrae’ DG7A (98.01%), H. soli PB17T (97.26%), H. glaciei VUG-A130T (96.78%), H. antarcticus VUG-A42aaT (96.72%), H. ruber PB156T (96.61%), and H. saemangeumensis GSR0100T (95.77%). The G+C content of the genomic DNA of strain 16F3Y-2T was 62.9 mol%. The isolate contained MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1 ω7c/C16:1 ω6c; 35.5%), C15:0 iso (16.9%), C16:1 ω5c (10.9%), and C15:0 anteiso (9.9%) as major fatty acids. The major polar lipid was phosphatidylethanolamine. Phenotypic and chemotaxonomic data supported the affiliation of strain 16F3Y-2T with the genus Hymenobacter. However, strain 16F3Y-2T exhibited relatively low levels of DNA-DNA relatedness with ‘H. terrae’ KCTC 32554 (44.1%) and H. soli KCTC 12607T (24.3%), clearly indicating that the isolate constitutes a new genospecies. Strain 16F3Y-2T could be differentiated from its phylogenetic neighbors on the basis of several phenotypic, genotypic, and chemotaxonomic features. Therefore, strain 16F3Y-2T represents a novel species in the genus Hymenobacter, for which the name Hymenobacter daeguensis sp. nov. is proposed. The type strain is 16F3Y-2T (=KCTC 52537T =JCM 31654T).  相似文献   

20.
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation factor-1α and RNA polymerase II, subunits B1 and B2. The new taxa are: Deakozyma gen. nov., type species Deakozyma indianensis sp. nov. (type strain NRRL YB-1937, CBS 12903); Danielozyma gen. nov., type species Danielozyma ontarioensis comb. nov. (type strain NRRL YB-1246, CBS 8502); D. litseae comb. nov. (type strain NRRL YB-3246, CBS 8799); Middelhovenomyces gen. nov., type species Middelhovenomyces tepae comb. nov. (type strain NRRL Y-17670, CBS 5115) and M. petrohuensis comb. nov. (type strain NRRL Y-17663, CBS 8173).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号