首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanotransduction in endothelial cell migration   总被引:3,自引:0,他引:3  
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.  相似文献   

2.
The endothelial cell glycocalyx, a structure coating the luminal surface of the vascular endothelium, and its related mechanotransduction have been studied by many over the last decade. However, the role of vascular smooth muscle cells (SMCs) glycocalyx in cell mechanotransduction has triggered little attention. This study addressed the role of heparan sulfate proteoglycans (HSPGs), a major component of the glycocalyx, in the shear-induced proliferation, migration, and nitric oxide (NO) production of the rat aortic smooth muscle cells (RASMCs). A parallel plate flow chamber and a peristaltic pump were employed to expose RASMC monolayers to a physiological level of shear stress (12 dyn/cm(2)). Heparinase III (Hep.III) was applied to selectively degrade heparan sulfate on the SMC surface. Cell proliferation, migration, and NO production rates were determined and compared among the following four groups of cells: 1) untreated with no flow, 2) Hep.III treatment with no flow, 3) untreated with flow of 12 dyn/cm(2) exposure, and 4) Hep.III treatment with flow of 12 dyn/cm(2) exposure. It was observed that flow-induced shear stress significantly suppressed SMC proliferation and migration, whereas cells preferred to aligning along the direction of flow and NO production were enhanced substantially. However, those responses were not found in the cells with Hep.III treatment. Under flow condition, the heparinase III-treated cells remained randomly oriented and proliferated as if there were no flow presence. Disruption of HSPG also enhanced wound closure and inhibited shear-induced NO production significantly. This study suggests that HSPG may play a pivotal role in mechanotransduction of SMCs.  相似文献   

3.
Endothelial cell (EC) migration plays a critical role in vascular remodeling. Here we investigated the interactions between haptotaxis (induced by extracellular matrix gradient) and mechanotaxis (induced by mechanical forces) during EC migration. A micropatterning technique was used to generate step changes of collagen surface density. Due to haptotaxis, ECs developed focal adhesions and migrated into the area with higher surface density of collagen. Different levels of fluid shear stress were applied on ECs in the direction perpendicular to collagen strips. Shear stress at 2 dyn/cm2 did not affect haptotaxis, while shear stress at 3 dyn/cm2 or higher was sufficient to drive the migration of most ECs in the flow direction and against haptotaxis. Immunostaining revealed the increase of focal adhesions and lamellipodial protrusion in the direction of flow. These results suggest that shear stress beyond a certain threshold can be a predominant factor to determine the direction of EC migration.  相似文献   

4.
It has been shown that shear stress plays a critical role in promoting endothelial cell (EC) differentiation from embryonic stem cell (ESC)-derived ECs. However, the underlying mechanisms mediating shear stress effects in this process have yet to be investigated. It has been reported that the glycocalyx component heparan sulfate proteoglycan (HSPG) mediates shear stress mechanotransduction in mature EC. In this study, we investigated whether cell surface HSPG plays a role in shear stress modulation of EC phenotype. ESC-derived EC were subjected to shear stress (5 dyn/cm(2)) for 8 h with or without heparinase III (Hep III) that digests heparan sulfate. Immunostaining showed that ESC-derived EC surfaces contain abundant HSPG, which could be cleaved by Hep III. We observed that shear stress significantly increased the expression of vascular EC-specific marker genes (vWF, VE-cadherin, PECAM-1). The effect of shear stress on expression of tight junction protein genes (ZO-1, OCLD, CLD5) was also evaluated. Shear stress increased the expression of ZO-1 and CLD5, while it did not alter the expression of OCLD. Shear stress increased expression of vasodilatory genes (eNOS, COX-2), while it decreased the expression of the vasoconstrictive gene ET1. After reduction of HSPG with Hep III, the shear stress-induced expression of vWF, VE-cadherin, ZO-1, eNOS, and COX-2, were abolished, suggesting that shear stress-induced expression of these genes depends on HSPG. These findings indicate for the first time that HSPG is a mechanosensor mediating shear stress-induced EC differentiation from ESC-derived EC cells.  相似文献   

5.
Shi ZD  Wang H  Tarbell JM 《PloS one》2011,6(1):e15956

Background

Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.

Methodology/Principal Findings

Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.

Conclusions/Significance

We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering.  相似文献   

6.
Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.  相似文献   

7.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

8.
Molecular basis of the effects of shear stress on vascular endothelial cells   总被引:18,自引:0,他引:18  
Li YS  Haga JH  Chien S 《Journal of biomechanics》2005,38(10):1949-1971
Blood vessels are constantly exposed to hemodynamic forces in the form of cyclic stretch and shear stress due to the pulsatile nature of blood pressure and flow. Endothelial cells (ECs) are subjected to the shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular functions, e.g., proliferation, apoptosis, migration, permeability, and remodeling, as well as gene expression. The ECs use multiple sensing mechanisms to detect changes in mechanical forces, leading to the activation of signaling networks. The cytoskeleton provides a structural framework for the EC to transmit mechanical forces between its luminal, abluminal and junctional surfaces and its interior, including the cytoplasm, the nucleus, and focal adhesion sites. Endothelial cells also respond differently to different modes of shear forces, e.g., laminar, disturbed, or oscillatory flows. In vitro studies on cultured ECs in flow channels have been conducted to investigate the molecular mechanisms by which cells convert the mechanical input into biochemical events, which eventually lead to functional responses. The knowledge gained on mechano-transduction, with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes in vascular remodeling and adaptation in health and disease.  相似文献   

9.
During their migration into inflammatory sites, immune cells, such as T cells, secrete extracellular matrix (ECM)-degrading enzymes, such as heparanase, which, under mildly acidic conditions, degrade heparan sulfate proteoglycans (HSPG). We have previously shown that at pH 7.2, human placental heparanase loses its enzymatic activity, while retaining its ability to bind HSPG and promote T cell adhesion to unfractionated ECM. We now demonstrate that the 65-kDa recombinant human heparanase, which is devoid of enzymatic activity, but can still bind HSPG, captures T cells under shear flow conditions and mediates their rolling and arrest, in the absence or presence of stromal cell-derived factor 1 alpha (SDF-1 alpha; CXCL12), in an alpha(4)beta(1)-VCAM-1-dependent manner. Furthermore, heparanase binds to and induces T cell adhesion to key ECM components, like fibronectin and hyaluronic acid, in beta(1) integrin- and CD44-specific manners, respectively, via the activation of the protein kinase C and phosphatidylinositol 3-kinase intracellular signaling machineries. Although the nature of the putative T cell heparanase-binding moiety is unknown, it appears that heparanase exerts its proadhesive activity by interacting with the T cells' surface HSPG, because pretreatment of the cells with heparinase abolished their subsequent response to heparanase. Also, heparanase augmented the SDF-1 alpha-triggered phosphorylation of Pyk-2 and extracellular signal-regulated kinase-2 implicated in integrin functioning. Moreover, heparanase, which had no chemotactic effect on T cells on its own, augmented the SDF-1 alpha-induced T cell chemotaxis across fibronectin. These findings add another dimension to the known versatility of heparanase as a key regulator of T cell activities during inflammation, both in the context of the vasculature and at extravascular sites.  相似文献   

10.
Hemodynamic regulation of directional endothelial cell (EC) migration implies an essential role of shear stress in governing EC polarity. Shear stress induces reorientation of the microtubule organizing center toward the leading edge of migrating cells in a Cdc42-dependent manner. We have characterized the global patterns of EC migration in confluent monolayers as a function of shear stress direction and exogenous pleiotropic factors. Results demonstrate the presence of mitogenic factors significantly affects the flow-induced dynamics of movement by prolonging the onset of monolayer quiescence up to 4 days, but not shear stress-induced morphology. In conjunction with increased motility, exogenous growth factors contributed to the directed migration of ECs in the flow direction. ECs exposed to arterial flow in serum/growth factor-free media and then supplemented with growth factors rapidly increased directional migration to 85% of cells migrating in the direction of flow and induced an increase in the distance traveled with the flow direction. This response was modulated by the directionality of flow and inhibited by the expression of dominant-negative Par6, a major downstream effector of Cdc42-induced polarity. Shear stress-induced directed migratory polarity is modulated by exogenous growth factors and dependent on Par6 activity and shear stress direction.  相似文献   

11.
Vascular endothelial cells (ECs) are constantly subjected to blood flow-induced shear stress and the influences of neighboring smooth muscle cells (SMCs). In the present study, a coculture flow system was developed to study the effect of shear stress on EC-SMC interactions. ECs and SMCs were separated by a porous membrane with only the EC side subjected to the flow condition. When ECs were exposed to a shear stress of 12 dynes/cm2 for 24 h, the cocultured SMCs tended to orient perpendicularly to the flow direction. This perpendicular orientation of the cocultured SMCs to flow direction was not observed when ECs were exposed to a shear stress of 2 dynes/cm2. Under the static condition, long and parallel actin bundles were observed in the central regions of the cocultured SMCs, whereas the actin filaments localized mainly at the periphery of the cocultured ECs. After 24 h of flow application, the cocultured ECs displayed very long, well-organized, parallel actin stress fibers aligned with the flow direction in the central regions of the cells. Immunostaining of platelet endothelial cell adhesion molecule-1 confirmed the elongation and alignment of the cocultured ECs with the flow direction. Coculture with SMCs under static condition induced EC gene expressions of growth-related oncogene-alpha and monocyte chemotactic protein-1, and shear stress was found to abolish these SMC-induced gene expressions. Our results suggest that shear stress may serve as a down-regulator for the pathophysiologically relevant gene expression in ECs cocultured with SMCs.  相似文献   

12.
In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from the known alteration in assembly of N-linked glycans affecting the carbohydrate chains on the proteoglycan or some other combination of factors is discussed.  相似文献   

13.
Endothelial cells (ECs) respond to fluid shear stress. They reveal shear stress related morphological changes in both their cell shape and cytoskeletal organization. Little is known about the cytoskeletal organization of ECs in situ. We studied, together with the living ultrasound high resolution imaging system, the distribution of stress fibers (SFs), certain focal adhesion (FA) and signal transduction associated proteins in guinea pig aortic and venous ECs. Although SFs present in the basal portion of venous ECs ran along the direction of the blood flow, their size was smaller and their number was fewer than those of aortic ECs. Venous ECs were elongated to the direction of flow than in aortic ECs exposed over normal shear stress (SS). Since fluid SS in the vein is low, a sustained and uni-directional low SS over a long period might thus cause these structural features observed in venous ECs.  相似文献   

14.
Li S  Bhatia S  Hu YL  Shiu YT  Li YS  Usami S  Chien S 《Biorheology》2001,38(2-3):101-108
The migration of vascular endothelial cells (ECs) plays an important role in vascular remodeling. Here we studied the effects of cell morphology on the migration of bovine aortic ECs by culturing cells on micropatterned strips of collagen matrix (60-, 30-, and 15-microm wide). The spreading areas of the cells on 15- and 30-microm wide strips were 30% lower than those on 60-microm wide strips and unpatterned collagen. The cells on 15-microm wide strips completely aligned in the direction of the strip, and had significantly lower shape index than those in all other groups. On strips of all widths, ECs tended to migrate in the direction of strips. ECs on 15-microm wide strips had highest speed, particularly in the direction of the strip. Vinculin staining showed that the leading edge of ECs on 15-microm wide strips had focal adhesions that were oriented with their lamellipodial protrusion and the direction of cell migration; this arrangement of the focal adhesions may promote EC migration. The present study provides direct evidence on the role of cell morphology in EC migration, and will help us to understand the mechanisms of EC migration during angiogenesis and wound healing.  相似文献   

15.
Flow patterns in blood vessels contribute to focal distribution of atherosclerosis; the underlying mechanotransduction pathways remain to be investigated. We demonstrate that different flow patterns elicit distinct responses of Krüppel-like factor-2 (KLF2) in endothelial cells (ECs) in vitro and in vivo. While pulsatile flow with a significant forward direction induced sustained expression of KLF2 in cultured ECs, oscillatory flow with little forward direction caused prolonged suppression after a transient induction. The suppressive effect of oscillatory flow was Src-dependent. Immunohistochemical studies on ECs at arterial branch points revealed that KLF2 protein levels were related to local hemodynamics. Such flow-associated expression patterns were also demonstrated in a rat aortic restenosis model. Inhibition of KLF2 with siRNA sensitized ECs to oxidized LDL-induced apoptosis, indicating a protective role of KLF2. In conclusion, differential regulation of KLF2 may mediate the distinct vascular effects induced by various patterns of shear stress.  相似文献   

16.
The state of the endothelial cell (EC) determines the nature of its control of vascular smooth muscle cell (vSMC) biology. Conditioned medium from postconfluent ECs inhibits vSMC proliferation, whereas subconfluent conditioned medium from the same ECs has a stimulatory effect. We and others have identified confluent endothelial cells' production of heparan sulfate proteoglycans (HSPG) as critical to vSMC growth control. The question that arises is whether the stimulation that is observed with subconfluent cells is from (1) aberrant HSPG production, (2) elaboration of noninhibitory species of HSPG, or (3) production of other factors, such as mitogens, which counteract the inhibitory HSPG to stimulate vSMCs. We studied the relative effects of conditioned medium produced by both subconfluent and postconfluent EC cultures on vSMC growth. Conditioned medium was fractionated into nonproteoglycan (non-PG) and proteoglycan (PG) components by anion-exchange chromatography. The PG fractionation profile and the antiproliferative activity of the HSPGs isolated from both subconfluent and postconfluent EC-conditioned media were similar. However, the HSPG fraction alone could not approach the inhibitory potential of unfractionated conditioned medium from postconfluent EC cultures. Non-PG proteins produced by the endothelial cultures had no effect on vSMC growth on their own. Yet, when they were mixed together with HSPG fractions, from either subconfluent or postconfluent EC cultures, the full growth effects were returned. Non-PG protein fractions from postconfluent cultures with HSPG fractions gave maximal inhibition of vSMC growth, whereas non-PG protein fractions from subconfluent EC cultures with HSPG fractions produced the maximal stimulation. Thus, whereas the net stimulatory or inhibitory effect on vSMC growth of EC-conditioned medium is density dependent, this effect does not result from a difference in the antiproliferative heparan sulfate component but rather from non-PG proteins that interact with the heparan sulfates.  相似文献   

17.
Zeng Y  Sun HR  Yu C  Lai Y  Liu XJ  Wu J  Chen HQ  Liu XH 《Cytokine》2011,53(1):42-51
The migration of endothelial cells (ECs) plays critical roles in vascular physiology and pathology. The receptors CXCR1 and CXCR2, known as G protein-coupled receptors which are essential for migratory response of ECs toward the shear stress-dependent CXCL8 (interleukin-8), are potential mechano-sensors for mechanotransduction of the hemodynamic forces. In present study, the mRNA and protein expression of CXCR1 and CXCR2 in EA.hy926 cells was detected by RT-PCR and Western blot analysis under three conditions of laminar shear stress (5.56, 10.02 and 15.27 dyn/cm(2)) respectively. Using a scratched-wound assay, the effects of CXCR1 and CXCR2 were assessed by the percentage of wound closure while CXCR1 and CXCR2 were functional blocked by the CXCL8 receptor antibodies. The results showed that the mRNA and protein expression of CXCR1 and CXCR2 was both upregulated by 5.56 dyn/cm(2) laminar shear stress, but was both downregulated by 15.27 dyn/cm(2). The wound closure was inhibited significantly while cells were treated with those antibodies in all the conditions. It was suggested that CXCR1 and CXCR2 are involved in mediating the laminar shear stress-induced EC migration. Taken together, these findings indicated that CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced EC migration. Understanding this expanded mechanism of laminar shear stress-induced cell migration will provide novel molecular targets for therapeutic intervention in cancer and cardiovascular diseases.  相似文献   

18.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

19.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

20.
Summary— To analytically study the morphological responses of vascular endothelial cells (ECs) to fluid flow, we designed a parallel plate flow culture chamber in which cells were cultured under fluid shear stress ranging from 0.01 to 2.0 Pa for several days. Via a viewing window of the chamber, EC responses to known levels of fluid shear stress were monitored either by direct observations or by a video-enhanced time-lapse microscopy. Among the responses of cultured ECs to flow, morphological responses take from hours to days to be fully expressed, except for the fluid shear stress-dependent motility pattern change we reported earlier which could be detected within 30 min of flow changes. We report here that ECs exposed to more than 1.0 Pa of fluid shear shear stress have developed lamellipodia in the direction of flow in 10 min. This is the fastest structurally identifiable EC response to fluid shear stress. This was a reversible response. When the flow was stopped or reduced to the level which exerted less than 0.1 Pa of fluid shear stress, the biased lamellipodium development was lost within several minutes. The microtubule organizing center was located posterior to the nucleus in ECs under the influence of flow. However, this position was established only in ECs responding to fluid shear stress for longer than 1 h, indicating that positioning of the microtubule organizing center was not the reason for, but rather the result of, the biased lamellipodium response. Colcemid-treated ECs responded normally to flow, indicating that microtubules were not involved in both flow sensing and the flow-induced, biased lamellipodium development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号