首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的:将弗氏2a志贺菌2457T的毒力大质粒pSF导入大肠杆菌MG1655。方法:通过诱动转移技术,将弗氏2a志贺菌2457T的毒力大质粒导入大肠杆菌MG1655。结果:构建了MG1655/pSF:pXL275-virG的毒力大质粒导入突变株,双向电泳初步比较分析表明在重组MG1655中有志贺菌毒力的表达。结论:成功地将弗氏2a志贺菌2457T毒力大质粒pSF导入了大肠杆菌MG1655。  相似文献   

2.
NotI genomic cleavage map of Escherichia coli K-12 strain MG1655.   总被引:4,自引:2,他引:2       下载免费PDF全文
Several approaches were used to construct a complete NotI restriction enzyme cleavage map of the genome of Escherichia coli MG1655. The approaches included use of transposable element insertions that created auxotrophic mutations and introduced a NotI site into the genome, hybridization of NotI fragments to the ordered lambda library constructed by Kohara et al. (BioTechniques 10:474-477, 1991), Southern blotting of NotI digests with cloned genes as probes, and analysis of the known E. coli DNA sequence for NotI sites. In all, 22 NotI cleavage sites were mapped along with 26 transposon insertions. These sites were localized to clones in the lambda library and, when possible, sequenced genes. The map was compared with that of strain EMG2, a wild-type E. coli K-12 strain, and several differences were found, including a region of about 600 kb with an altered restriction pattern and an additional fragment in MG1655. Comparison of MG1655 with other strains revealed minor differences but indicated that this map was representative of that for many commonly used E. coli K-12 strains.  相似文献   

3.
【目的】克隆丙酮丁醇梭状芽胞杆菌(Clostridium acetobutylicum)ATCC824丁醇合成途径关键酶基因,构建产丁醇的工程大肠杆菌。【方法】以C.acetobutylicum ATCC824基因组为模板,分别扩增丁醇合成途径关键酶基因thil,adhE2和BCS operon(crt-bcd-etfB-etfA-hbd)基因序列,构建BCS operon-adhE2-thil/pTrc99a/MG1655(pBAT)。重组菌E.coli pBAT采用0.1 mmol异丙基-β-硫代半乳糖苷(IPTG)诱导5 h,测定乙酰基转移酶(THL)、3-羟基丁酰辅酶A脱氢酶(HBD)、3-羟基丁酰辅酶A脱水酶(CRT)、丁酰辅酶A脱氢酶(BCD)、醛醇脱氢酶(BYDH/BDH)的酶活。并以该基因工程菌作为发酵菌种,采用好氧、厌氧和微好氧三种培养方式,检测丁醇产量。【结果】酶活测定结果显示:THL酶活达到0.160 U/mg protein,酶活力提高了近30倍;HBD酶活力提高了近5倍;CRT酶活达到1.53 U/mg protein,野生菌株无此酶活;BCD酶活力提高了32倍;BYDH/BDH酶活力无显著提高。3种发酵培养结果显示在微好氧和厌氧条件下,均有丁醇产生,且丁醇的最大产量约为84 mg/L。【结论】本实验通过构建产丁醇基因工程大肠杆菌,实现了丁醇关键酶基因在大肠杆菌中的活性表达以及发酵产丁醇,为发酵法生产丁醇开辟了一条新的途径。  相似文献   

4.
Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Delta(csgG-csgC); colanic acid biosynthesis and assembly, Delta(wcaL-wza); and type I pilus biosynthesis, Delta(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were approximately 16% and approximately 25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.  相似文献   

5.
6.
Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumarate-nitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.  相似文献   

7.
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.  相似文献   

8.
9.
目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA.方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide,IAM)途径和色胺(tryptamine,TRP)途径.结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆...  相似文献   

10.
Type 1 fimbriation and fimE mutants of Escherichia coli K-12.   总被引:5,自引:1,他引:4       下载免费PDF全文
We reexamined the influence of fimE, also referred to as hyp, on type 1 fimbriation in Escherichia coli K-12. We found that one strain used previously and extensively in the analysis of type 1 fimbriation, strain CSH50, is in fact a fimE mutant; the fimE gene of CSH50 contains a copy of the insertion sequence IS1. Using a recently described allelic exchange procedure, we transferred the fimE::IS1 allele from CSH50 to our present wild-type strain, MG1655. Characterization of this IS1-containing strain (AAEC137), together with another fimE mutant of MG1655 (AAEC143), led to two conclusions about the role of fimE. First, the formation of phase variant colony types, reported widely in strains of E. coli, depends on mutation of fimE, at least in K-12 strain MG1655. Here we showed that this phenomenon reflects the ability of fimE to stimulate the rapid inversion of the fim invertible element from on to off when the bacteria are grown on agar. Second, our analysis of fimE mutants, which is limited to chromosomal constructs, provided no evidence that they are hyperfimbriate. We believe that these results, which are at odds with a previous study using fim-containing multicopy plasmids, reflect differences in gene copy number.  相似文献   

11.
12.
We have used an Escherichia coli K-12 whole-genome array based on the DNA sequence of strain MG1655 as a tool to identify deletions in another E. coli K-12 strain, MC4100, by probing the array with labeled chromosomal DNA. Despite the continued widespread use of MC4100 as an experimental system, the specific genetic relationship of this strain to the sequenced K-12 derivative MG1655 has not been resolved. MC4100 was found to contain four deletions, ranging from 1 to 97 kb in size. The exact nature of three of the deletions was previously unresolved, and the fourth deletion was altogether unknown.  相似文献   

13.
Lyons E  Freeling M  Kustu S  Inwood W 《PloS one》2011,6(2):e16717
We here develop computational methods to facilitate use of 454 whole genome shotgun sequencing to identify mutations in Escherichia coli K12. We had Roche sequence eight related strains derived as spontaneous mutants in a background without a whole genome sequence. They provided difference tables based on assembling each genome to reference strain E. coli MG1655 (NC_000913). Due to the evolutionary distance to MG1655, these contained a large number of both false negatives and positives. By manual analysis of the dataset, we detected all the known mutations (24 at nine locations) and identified and genetically confirmed new mutations necessary and sufficient for the phenotypes we had selected in four strains. We then had Roche assemble contigs de novo, which we further assembled to full-length pseudomolecules based on synteny with MG1655. This hybrid method facilitated detection of insertion mutations and allowed annotation from MG1655. After removing one genome with less than the optimal 20- to 30-fold sequence coverage, we identified 544 putative polymorphisms that included all of the known and selected mutations apart from insertions. Finally, we detected seven new mutations in a total of only 41 candidates by comparing single genomes to composite data for the remaining six and using a ranking system to penalize homopolymer sequencing and misassembly errors. An additional benefit of the analysis is a table of differences between MG1655 and a physiologically robust E. coli wild-type strain NCM3722. Both projects were greatly facilitated by use of comparative genomics tools in the CoGe software package (http://genomevolution.org/).  相似文献   

14.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

15.
大肠杆菌aceE基因是编码丙酮酸脱氢酶多酶复合体PdhR的关键酶之一。利用Red重组系统敲除大肠杆菌MG1655的aceE基因后,阻断了丙酮酸流向TCA循环,导致丙酮酸的累积,也使菌体生长受到影响,在培养基中补加5 g/L KAc后可以在一定程度上弥补菌株在生长上的缺陷。摇瓶发酵36 h,MG1655没有积累丙酮酸,MG1655ΔaceE∷cat菌株可以积累26.77 g/L丙酮酸,为利用大肠杆菌发酵生产丙酮酸奠定了基础。  相似文献   

16.
Since high hydrostatic pressure is becoming increasingly important in modern food preservation, its potential effects on microorganisms need to be thoroughly investigated. In this context, mild pressures (<200 MPa) have recently been shown to induce an SOS response in Escherichia coli MG1655. Due to this response, we observed a RecA- and LexA-dependent induction of lambda prophage upon treating E. coli lysogens with sublethal pressures. In this report, we extend this observation to lambdoid Shiga toxin (Stx)-converting bacteriophages in MG1655, which constitute an important virulence trait in Stx-producing E. coli strains (STEC). The window of pressures capable of inducing Stx phages correlated well with the window of bacterial survival. When pressure treatments were conducted in whole milk, which is known to promote bacterial survival, Stx phage induction could be observed at up to 250 MPa in E. coli MG1655 and at up to 300 MPa in a pressure-resistant mutant of this strain. In addition, we found that the intrinsic pressure resistance of two types of Stx phages was very different, with one type surviving relatively well treatments of up to 400 MPa for 15 min at 20 degrees C. Interestingly, and in contrast to UV irradiation or mitomycin C treatment, pressure was not able to induce Stx prophage or an SOS response in several natural Stx-producing STEC isolates.  相似文献   

17.
Recently, efforts have been made to improve the properties of Escherichia coli as a recombinant host by 'genomic surgery'-deleting large segments of the E. coli K12 MG1655 genome without scars. These excised segments included K-islands, which contain a high proportion of transposons, insertion sequences, cryptic phage, damaged, and unknown-function genes. The resulting multiple-deletion strain, designated E. coli MDS40, has a 14% (about 700 genes) smaller genome than the parent strain, E. coli MG1655. The multiple-deletion and parent E. coli strains were cultured in fed-batch fermenters to high cell densities on minimal medium to simulate industrial conditions for evaluating growth and recombinant protein production characteristics. Recombinant protein production and by-product levels were quantified at different controlled growth rates. These results indicate that the multiple-deletion strain's growth behavior and recombinant protein productivity closely matched the parent stain. Thus, the multiple-deletion strain E. coli MDS40 provides a suitable foundation for further genomic reduction.  相似文献   

18.
The aim of this study was twofold: first, to characterize the free extracellular polymeric substances (EPS) and bound EPS produced by Escherichia coli during different growth phases in different media, and then to investigate the role of the free EPS in promoting aggregation. EPS was extracted from a population of E. coli MG1655 cells grown in different media composition (Luria-Bertani (LB) and Luria-Bertani with the addition of 0.5 w/v% glucose at the beginning of the growth phase (LBG)) and at different growth phases (6 and 24 h). The extracted EPS was characterized using Fourier transform infrared spectroscopy and further identified using one-dimensional gel-based electrophoresis and tandem mass spectrometry. E. coli MG1655 was found to produce significantly lower amounts of bound EPS compared to free EPS under all conditions. The protein content of free EPS increased as the cells progressed from the exponential to stationary phase when grown in LB or LBG, while the carbohydrate content only increased across the growth phases for cells grown in LBG. FTIR revealed a variation in the different functional groups such as amines, carboxyl, and phosphoryl groups for free EPS extracted at the different growth conditions. Over 500 proteins were identified in the free EPS, with 40 proteins common in all growth conditions. Proteins with functionality related to amino acid and carbohydrate metabolism, as well as cell wall and membrane biogenesis were among the highest proteins identified in the free EPS extracted from E. coli MG1655 under all growth and media conditions. The role of bound and free EPS was investigated using a standardized aggregation assay. Bound EPS did not contribute to aggregation of E. coli MG1655. The readdition of free EPS to E. coli MG1655 resulted in aggregation of the cells in all growth conditions. Free EPS extracted from the 24 h E. coli MG1655 cultures grown in LB had the greatest effect on aggregation of cells grow in LBG, with a 30% increase in aggregation observed.  相似文献   

19.
The complete 13 site AvrII restriction map of the genome of E coli strain MG1655 is presented and compared with several other E. coli strains. The map was determined primarily by isolating individual AvrII fragments from pulsed-field gels, and hybridizing these large probes to a battery of mapped E. coli clones in lambda vectors. AvrII restriction patterns for eight other laboratory strains were determined and maps for seven of them deduced from the gel and comparisons between the strain genotypes, the MG1655 map, and AvrII sites in E. coli sequences taken from Genbank.  相似文献   

20.
sucAB and sucCD of Escherichia coli encode enzymes that generate succinyl-CoA from 2-oxoglutarate and succinate, respectively. Their mutual essentiality was studied. sucAB and sucCD could be deleted individually, but not simultaneously. The mutual essentiality of sucAB and sucCD was further confirmed by the conditional expression of sucABCD, sucAB, and sucCD under the control of a P(BAD) in E. coli MG1655, E. coli MG1655 (DeltasucCD), and E. coli MG1655 (DeltasucAB), respectively. These strains grew well in Luria-Bertani medium containing 0.1% arabinose, but not in the absence of arabinose unless the medium was supplemented with succinyl-CoA. Our results indicate that either sucAB or sucCD is enough to produce succinyl-CoA that is essential for cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号