首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

2.
Abstract

The accuracy of comparative genomic hybridization (CGH) analysis is affected by hybridization efficiency. We describe here a simple method for enhancing hybridization efficiency. The hybridization procedure is essentially the same as that of conventional methods. Hybridization solution containing denatured DNA probe mixture was applied to a metaphase chromosome slide or DNA chip slide and covered with a coverslip. In the new method, however, the slide was inverted by turning the coverslip downward prior to hybridization. We termed this method the inverted slide method. To estimate the efficiency of the new method, metaphase chromosome slides and DNA chip slides were treated by both the conventional and inverted slide methods and incubated in a moist chamber at 37°C for 12, 24, 48, and 72 h. Hybridization signals were approximately 1.5 to 2 times brighter on the slides using the inverted slide method than those using the conventional method after 48 and 72 h of incubation. Furthermore, topographical differences in fluorescence intensity were smaller in slides using the inverted-slide method than in those prepared by the conventional method. The inverted slide method is methodologically very simple and improves the resolution of CGH.  相似文献   

3.
We compute P-values, based on the Wilcoxon test with ties, to compare two conditions with array comparative genomic hybridization data, and we provide a simple interface to export and plot these P-values.  相似文献   

4.
Comparative Genomic Hybridization (CGH) is a molecular cytogenetic analysis that allows identification of genomic changes by comparing the copy number of DNA sequences in cells of tested tissue and the reference specimen. CGH is based on competitive suppressive in situ hybridization of two differently labeled DNA probes (tested and reference, karyotypically normal, fluorochrome-labeled DNAs) with metaphase chromosomes of a healthy subject. First described by Kallioniemi et al. in 1992, the CGH assay has been widely used for identification and characterization of both numerical and structural chromosome abnormalities in cells of different tissues at various pathological conditions in humans, especially in tumor diseases. We discuss the specific features and quality control of comparative genomic hybridization, its advantages and limitations in detection of genomic imbalance and the prospects for development of this technology.  相似文献   

5.
The identification of unbalanced structural chromosome rearrangements using conventional cytogenetic techniques depends on recognition of the unknown material from its banding pattern. Even with optimally banded chromosomes, when large chromosome segments are involved, cytogeneticists may not always be able to determine the origin of extrachromosomal material and supernumerary chromosomes. We report here on the application of comparative genomic hybridization (CGH), a new molecular-cytogenetic assay capable of detecting chromosomal gains and losses, to six clinical samples suspected of harboring unbalanced structural chromosome abnormalities. CGH provided essential information on the nature of the unbalanced aberration investigated in five of the six samples. This approach has proved its ability to resolve complex karyotypes and to provide information when metaphase chromosomes are not available. In cases where metaphase chromosome spreads were available, confirmation of CGH results was easily obtained by fluorescence in situ hybridization (FISH) using specific probes. Thus the combined use of CGH and FISH provided an efficient method for resolving the origin of aberrant chromosomal material unidentified by conventional cytogenetic analysis.  相似文献   

6.
Cancer progression is due to the accumulation of recurrent genomic alterations that induce growth advantage and clonal expansion. Most of these genomic changes can be detected using the array comparative genomic hybridization (CGH) technique. The accurate classification of these genomic alterations is expected to have an important impact on translational and basic research. Here we review recent advances in CGH technology used in the characterization of different features of breast cancer. First, we present bioinformatics methods that have been developed for the analysis of CGH arrays; next, we discuss the use of array CGH technology to classify tumor stages and to identify and stratify subgroups of patients with different prognoses and clinical behaviors. We finish our review with a discussion of how CGH arrays are being used to identify oncogenes, tumor suppressor genes, and breast cancer susceptibility genes.  相似文献   

7.
Comparative genomic hybridizations (CGH) using microarrays are performed with bacteria in order to determine the level of genomic similarity between various strains. The microarrays applied in CGH experiments are constructed on the basis of the genome sequence of one strain, which is used as a control, or reference, in each experiment. A strain being compared with the known strain is called the unknown strain. The ratios of fluorescent intensities obtained from the spots on the microarrays can be used to determine which genes are divergent in the unknown strain, as well as to predict the copy number of actual genes in the unknown strain. In this paper, we focus on the prediction of gene copy number based on data from CGH experiments. We assumed a linear connection between the log2 of the copy number and the observed log2-ratios, then predictors based on the factor analysis model and the linear random model were proposed in an attempt to identify the copy numbers. These predictors were compared to using the ratio of the intensities directly. Simulations indicated that the proposed predictors improved the prediction of the copy number in most situations. The predictors were applied on CGH data obtained from experiments with Enterococcus faecalis strains in order to determine copy number of relevant genes in five different strains.  相似文献   

8.
9.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

10.
Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confidence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.  相似文献   

11.
Identifying the genetic differences between two organisms or cell types has been a major goal in modern biomedical research. Recently, we developed a novel methodology that can rapidly identify the differences between two populations of DNA. This method, termed 'differential subtraction chain' (DSC), is based on a novel 'negative amplification' strategy that converts (amplifiable) tester sequences to counterpart (unamplifiable) driver sequences. The result is a double exponential elimination of amplifiable sequences in the testers, while preserving the sequences in the testers that have no counterpart in the drivers. We applied this methodology to the genome of a glioblastoma cell line. A homozygous deletion was rapidly identified. We extended this technique to identifying the unique sequences in mRNA. Two CDC25 transgene fragments were quickly identified in a cdc25B transgenic mouse. We also applied this methodology to systems with profound differences in mRNA expression. In a 'prostate epithelia subtracting blood cells' DSC reaction, a sample of unique gene fragments which are absent in the prostate but present in the blood were identified. Lastly, we detected rare (1 virus/100 cells) Herpes simplex virus type 2 (HSV-2) sequences in a tissue culture, indicating good sensitivity of this methodology. Overall, DSC represents a fast, efficient and sensitive method for identifying differences in genomic DNA and mRNA and can be easily applied in a variety of biological systems.  相似文献   

12.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

13.
Microarray-based comparative genomic hybridization (array-CGH) is a technique by which variations in copy numbers between two genomes can be analyzed using DNA microarrays. Array CGH has been used to survey chromosomal amplifications and deletions in fetal aneuploidies or cancer tissues. Herein we report a user-friendly, MATLAB-based, array CGH analyzing program, Chang Gung comparative genomic hybridization (CGcgh), as a standalone PC version. The analyzed chromosomal data are displayed in a graphic interface, and CGcgh allows users to launch a corresponding G-banding ideogram. The abnormal DNA copy numbers (gains and losses) can be identified automatically using a user defined window size (default value is 50 probes) and sequential student t-tests with sliding windows along with chromosomes. CGcgh has been tested in multiple karyotype-confirmed human samples, including five published cases and trisomies 13, 18, 21 and X from our laboratories, and 18 cases of which microarray data are available publicly. CGcgh can be used to detect the copy number changes in small genomic regions, which are commonly encountered by clinical geneticists. CGcgh works well for the data from cDNA microarray, spotted oligonucleotide microarrays, and Affymetrix Human Mapping Arrays (10K, 100K, 500K Array Sets). The program can be freely downloaded from . Y. S. Lee and A. Chao contributed equally to this work.  相似文献   

14.
DNA copy number changes were studied by comparative genomic hybridization on 10 tumor specimens of squamous cell carcinoma of cervix obtained from Korean patients. DNA was extracted from paraffin-embedded sections after removal of non-malignant cells by microdissection technique. Copy number changes were found in 8/10 tumors. The most frequent changes were chromosome 19 gains (n=6) and losses on chromosomes 4 (n=4), 5 (n=3), and 3p (n=3). A novel finding was amplification in chromosome arm 9p21-pter in 2 cases. Gains in 1, 3q, 5p, 6p, 8q, 16p, 17, and 20q and losses at 2q, 6q, 8p, 9q, 10p, 11, 13, 16q, and 18q were observed in at least one of the cases.  相似文献   

15.
Thermotoga heats up lateral gene transfer.   总被引:1,自引:0,他引:1  
The complete sequence of the bacterium Thermotoga maritima genome has revealed a large fraction of genes most closely related to those of archaeal species. This adds to the accumulating evidence that lateral gene transfer is a potent evolutionary force in prokaryotes, though questions of its magnitude remain.  相似文献   

16.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

17.
The study of aneuploidy in human oocytes, discarded from IVF cycles, has provided a better understanding of the incidence of aneuploidy of female origin and the responsible mechanisms. Comparative genomic hybridization (CGH) is an established technique that allows for the detection of aneuploidy in all chromosomes avoiding artifactual chromosome losses. In this review, results obtained using CGH in single cells (1PB and/or MII oocytes) are included. The results of oocyte aneuploidy rates obtained by CGH from discarded oocytes of IVF patients and of oocyte donors are summarized. Moreover, the mechanisms involved in the aneuploid events, e.g. whether alterations occurred due to first meiotic errors or germ-line mitotic errors are also discussed. Finally, the incidence of aneuploid oocyte production due to first meiotic errors and germ-line mitotic errors observed in oocytes coming from IVF patients and IVF oocyte donors was assessed.  相似文献   

18.
Comparative genomic hybridization (CGH) using microarrays is performed on bacteria in order to test for genomic diversity within various bacterial species. The microarrays used for CGH are based on the genome of a fully sequenced bacterium strain, denoted reference strain. Labelled DNA fragments from a sample strain of interest and from the reference strain are hybridized to the array. Based on the obtained ratio intensities and the total intensities of the signals, each gene is classified as either present (one copy or multiple copies) or divergent (zero copies). In this paper mixture models with different number of components are tted on different combinations of variables and compared with each other. The study shows that mixture models fitted on both the ratio intensities and the total intensities including the replicates for each gene improve, compared to previously published methods, the results for several of the data sets tested. Some summaries of the data sets are proposed as a guide for the choice of model and the choice of number of components. The models are applied on data from CGH experiments with the bacteria Staphylococcus aureus and  相似文献   

19.
BACKGROUND: Whole-genome amplification of minute samples of DNA for the use in comparative genomic hybridization (CGH) analysis has found widespread use, but the method has not been well validated. METHODS: Four protocols for degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) and fluorescence labeling were applied to test DNA from normal and K-562 cells. The DNA products were used for CGH analysis. RESULTS: The DOP-PCR-amplified DNA from each protocol produced hybridizations with different qualities. These could be seen primarily as differences in background staining and signal-to-noise ratios, but also as characteristic deviations of normal/normal hybridizations. One DOP-PCR-protocol was further investigated. We observed concordance between CGH results using unamplified and DOP-PCR-amplified DNA. An example of an analysis of an invasive carcinoma of the breast supports the practical value of this approach. CONCLUSIONS: DOP-PCR-amplified DNA is applicable for high- resolution CGH, the results being similar to those of CGH using unamplified DNA.  相似文献   

20.
Renal leiomyoma is a rare neoplasm. We report such a case in a 57-year-old Japanese woman who was found to have a mass in the left kidney. The histological examination disclosed the proliferation of spindle cells showing a benign appearance. Entrapped tubular cells were observed in the peripheral area of the tumor. The immunohistochemical examination of spindle neoplastic cells showed a positive reaction for alpha smooth muscle actin, h-caldesmon, l-caldesmon, calponin, muscle actin, myosin and desmin. Additionally, the ultrastructural examination of the tumor showed membrane caveolae and myofilaments in the cytoplasm. This tumor was considered to show a differentiation into smooth muscle cells. The comparative genomic hybridization of the tumor detected the combined losses of chromosomes 4, 6, 12 and 14 which has not been previously described in renal tumors. Finally, the immunohistochemical panel of smooth muscle markers and ultrastructural and genetic study may be useful in diagnosing renal leiomyoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号