首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.  相似文献   

2.
Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria.  相似文献   

3.
Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and ΔmamK mutant cells and that the actin-like filamentous structures observed in the ΔmamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.  相似文献   

4.
Pseudomonas sp. 14-3 is an Antarctic bacterium that shows high stress resistance in association with high polyhydroxybutyrate (PHB) production. In this paper genes involved in PHB biosynthesis (phaRBAC) were found within a genomic island named pha-GI. Numerous mobile elements or proteins associated with them, such as an integrase, insertion sequences, a bacterial group II intron, a complete Type I protein secretion system and IncP plasmid-related proteins were detected among the 28 ORFs identified in this large genetic element (32.3kb). The G+C distribution was not homogeneous, likely reflecting a mosaic structure that contains regions from diverse origins. pha-GI has strong similarities with genomic islands found in diverse Proteobacteria, including Burkholderiales species and Azotobacter vinelandii. The G+C content, phylogeny inference and codon usage analysis showed that the phaBAC cluster itself has a complex mosaic structure and indicated that the phaB and phaC genes were acquired by horizontal transfer, probably derived from Burkholderiales. These results describe for the first time a pha cluster located within a genomic island, and suggest that horizontal transfer of pha genes is a mechanism of adaptability to stress conditions such as those found in the extreme Antarctic environment.  相似文献   

5.
6.
Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.  相似文献   

7.
Genes involved in magnetite biomineralization are clustered in the genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense. We analyzed a 482-kb genomic fragment, in which we identified an approximately 130-kb region representing a putative genomic "magnetosome island" (MAI). In addition to all known magnetosome genes, the MAI contains genes putatively involved in magnetosome biomineralization and numerous genes with unknown functions, as well as pseudogenes, and it is particularly rich in insertion elements. Substantial sequence polymorphism of clones from different subcultures indicated that this region undergoes frequent rearrangements during serial subcultivation in the laboratory. Spontaneous mutants affected in magnetosome formation arise at a frequency of up to 10(-2) after prolonged storage of cells at 4 degrees C or exposure to oxidative stress. All nonmagnetic mutants exhibited extended and multiple deletions in the MAI and had lost either parts of or the entire mms and mam gene clusters encoding magnetosome proteins. The mutations were polymorphic with respect to the sites and extents of deletions, but all mutations were found to be associated with the loss of various copies of insertion elements, as revealed by Southern hybridization and PCR analysis. Insertions and deletions in the MAI were also found in different magnetosome-producing clones, indicating that parts of this region are not essential for the magnetic phenotype. Our data suggest that the genomic MAI undergoes frequent transposition events, which lead to subsequent deletion by homologous recombination under physiological stress conditions. This can be interpreted in terms of adaptation to physiological stress and might contribute to the genetic plasticity and mobilization of the magnetosome island.  相似文献   

8.
We have isolated four segments of Drosophila melanogaster DNA that hybridize to homologous initiator tRNAMet. Three of the cloned fragments contain initiator tRNA genes, each of which can be transcribed in vitro. The fourth clone, pPW568, contains an initiator tRNA pseudogene which is not transcribed in vitro by RNA polymerase III. The pseudogene is contained in a 1.15 kb DNA fragment. This fragment has the characteristics of dispersed repetitive DNA and hybridizes in situ to at least 30 sites in the Drosophila genome. The arrangement of the initiator tRNA genes we have isolated, is different to that of other Drosophila tRNA gene families. The initiator tRNA genes are not clustered nor intermingled with other tRNA genes. They occur as single copies within an approximately 415-bp repeat segment, which is separated from other initiator tRNA genes by a mean distance of 17 kb. In situ hybridization to polytene chromosomes localizes these genes to the 61D region of the Drosophila genome. Hybridization analysis of genomic DNA indicates the presence of 8-9 non-allelic initiator tRNA genes in Drosophila melanogaster.  相似文献   

9.
The organization of magnetosome genes was analysed in all available complete or partial genomic sequences of magnetotactic bacteria (MTB), including the magnetosome island (MAI) of the magnetotactic marine vibrio strain MV‐1 determined in this study. The MAI was found to differ in gene content and organization between Magnetospirillum species and strains MV‐1 or MC‐1. Although a similar organization of magnetosome genes was found in all MTB, distinct variations in gene order and sequence similarity were uncovered that may account for the observed diversity of biomineralization, cell biology and magnetotaxis found in various MTB. While several magnetosome genes were present in all MTB, others were confined to Magnetospirillum species, indicating that the minimal set of genes required for magnetosome biomineralization might be smaller than previously suggested. A number of novel candidate genes were implicated in magnetosome formation by gene cluster comparison. Based on phylogenetic and compositional evidence we present a model for the evolution of magnetotaxis within the Alphaproteobacteria, which suggests the independent horizontal transfer of magnetosome genes from an unknown ancestor of magnetospirilla into strains MC‐1 and MV‐1.  相似文献   

10.
11.
12.
Diversification of bacterial species and pathotypes is largely caused by horizontal transfer of diverse DNA elements such as plasmids, phages and genomic islands (e.g. pathogenicity islands, PAIs). A PAI called high-pathogenicity island (HPI) carrying genes involved in siderophore-mediated iron acquisition (yersiniabactin system) has previously been identified in Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica IB strains, and has been characterized as an essential virulence factor in these species. Strikingly, an orthologous HPI is a widely distributed virulence determinant among Escherichia coli and other Enterobacteriaceae which cause extraintestinal infections. Here we report on the HPI of E. coli strain ECOR31 which is distinct from all other HPIs described to date because the ECOR31 HPI comprises an additional 35 kb fragment at the right border compared to the HPI of other E. coli and Yersinia species. This part encodes for both a functional mating pair formation system and a DNA-processing region related to plasmid CloDF13 of Enterobacter cloacae. Upon induction of the P4-like integrase, the entire HPI of ECOR31 is precisely excised and circularised. The HPI of ECOR31 presented here resembles integrative and conjugative elements termed ICE. It may represent the progenitor of the HPI found in Y. pestis and E. coli, revealing a missing link in the horizontal transfer of an element that contributes to microbial pathogenicity upon acquisition.  相似文献   

13.
P C Wensink  S Tabata  C Pachl 《Cell》1979,18(4):1231-1246
An examination of cloned Drosophila DNA has revealed large clusters of densely spaced, short (less than or equal to 1 kb), moderately repetitive elements. Different clusters have many of the same repetitive elements, but these elements are arranged differently in each cluster. It is improbable that this clustered arrangement can be detected by conventional reassociation kinetic and electron microscopic techniques, but it can be detected and features of its fine structure can be determined by a two-dimensional version of Southern's blotting technique. The genomic organization of these clustered repetitive elements was investigated by hybridizing restriction fragments of cloned DNA to polytene chromosomes, to filter-bound recombinant DNA clones and to Southern blots of total Drosophila DNA. These studies demonstrated that clusters occur in euchromatic regions of the chromosomes and that at least one of the clusters has the same repetitive element organization in cloned and in chromosomal DNA. These studies also demonstrated that copies of the elements from one cluster are scattered in at least 1000 chromosomal regions. These regions appear to have differing concentrations of repetitive DNA, but together they account for a large fraction of Drosophila's moderately repetitive DNA. Aside from indicating the genomic organization of cluster elements, this work has identified cluster elements throughout a 9 kb region neighboring one of the heat shock genes, throughout the intron of the major rDNA repeat and within the apparently transposable element, 412.  相似文献   

14.
Xanthomonas campestris produces copious amounts of a complex exopolysaccharide, xanthan gum. Nonmucoid mutants, defective in synthesis of xanthan polysaccharide, were isolated after nitrosoguanidine mutagenesis. To isolate genes essential for xanthan polysaccharide synthesis (xps), a genomic library of X. campestris DNA, partially digested with SalI and ligated into the broad-host-range cloning vector pRK293, was constructed in Escherichia coli. The pooled clone bank was conjugated en masse from E. coli into three nonmucoid mutants by using pRK2013, which provides plasmid transfer functions. Kanamycin-resistant exconjugants were then screened for the ability to form mucoid colonies. Analysis of plasmids from several mucoid exconjugants indicated that overlapping segments of DNA had been cloned. These plasmids were tested for complementation of eight additional nonmucoid mutants. A 22-kilobase (kb) region of DNA was defined physically by restriction enzyme analysis and genetically by ability to restore mucoid phenotype to 10 of the 11 nonmucoid mutants tested. This region was further defined by subcloning and by transposon mutagenesis with mini-Mu(Tetr), with subsequent analysis of genetic complementation of nonmucoid mutants. A region of 13.5 kb of DNA was determined to contain at least five complementation groups. The effect of plasmids containing cloned xps genes on xanthan gum synthesis was evaluated. One plasmid, pCHC3, containing a 12.4-kb insert and at least four linked xanthan biosynthetic genes, increased the production of xanthan gum by 10% and increased the extent of pyruvylation of the xanthan side chains by about 45%. This indicates that a gene affecting pyruvylation of xanthan gum is linked to this cluster of xps genes.  相似文献   

15.
Five closely related immunoglobulin VH genes (subgroup II) were compared by sequencing of several kb of DNA. In three of the genes homology greater than 75% was found along an area of 4 kb that includes the coding region. The homology in flanking regions is only slightly lower than that in the coding sequences. Two other genes, which are located on the same EcoRI fragment, show high homology to the first three genes in the coding and immediately flanking regions. In more distant flanking regions no homology is found with the first three genes. This indicates that their evolutionary history differs from that of the other three genes. A region of simple DNA sequence composed of repetitive TCC and TCA elements was found at a distance of approximately 380 bp upstream from the initiator ATG of these VH genes. This region is the site where the two sets of genes abruptly start to diverge. The structure of the simple DNA sequence in the various VH genes suggests that it may be involved in gene interaction. We propose that both simple DNA sequences and homology in flanking regions serve a function in the correction of VH genes, which seem to be rather free to diverge and drift into pseudogenes. A correction mechanism may help this gene family to maintain its two major features, multiplicity and diversity.  相似文献   

16.
In this paper we report on the cloning and characterization of the murine interferon (IFN) beta gene. We have isolated and sequenced a 2.8 kb genomic fragment containing the murine IFN beta gene flanked by 1.2 kb 5' and 1 kb 3' untranslated regions (1 kb = 10(3) base-pairs). The mRNA cap site has been defined. An extensive analysis of the flanking sequence is provided and points out striking features such as: the presence of A + T-rich motifs characteristic of transiently expressed mRNAs, and homologies to repetitive R-type element flanks and to hormone-responsive elements. Comparison of the MuIFN beta 5' flanking region with those from other species reveals similarities in the sequences required for the regulated expression of such inducible genes. Computer analysis of the 130 base-pairs preceding the cap site has revealed TGAAAG motifs and shows that the presence of such elements and their permutants have biological significance, according to statistical calculations. Thus, the comparison between the mouse promoter reported here and the promoters from other species highlights the region containing the hexanucleotide blocks, which is strongly conserved.  相似文献   

17.
18.
19.
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.  相似文献   

20.
The oomycete plant pathogen Phytophthora nicotianae causes diseases on a wide range of plant species. To facilitate isolation and functional characterization of pathogenicity genes, we have constructed a large-insert bacterial artificial chromosome (BAC) library using nuclear DNA from P. nicotianae H1111. The library contains 10,752 clones with an average insert size of 90 kb and is free of mitochondrial DNA. The quality of the library was verified by hybridization with 37 genes, all of which resulted in the identification of multiple positive clones. The library is estimated to be 10.6 haploid genome equivalents based on hybridization of 23 single-copy genes and the genome size of P. nicotianae was estimated to be 95.5 Mb. Hybridization with a nuclear repetitive DNA probe revealed that 4.4% of clones in the library contained 28S rDNA. Hybridization of total genomic DNA to the library indicated that at least 39% of the BAC library contains repetitive DNA sequences. A BAC pooling strategy was developed for efficient library screening. The library was used to identify and characterize BAC clones containing an Hsp70 gene family whose four members were identified to be clustered within approximately 18 kb in the P. nicotianae genome based on the physical mapping of eight BACs spanning a genomic region of approximately 186 kb. The BAC library created provides an invaluable resource for the isolation of P. nicotianae genes and for comparative genomics studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号