首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer beta-amyloid peptides (Abeta40 and Abeta42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Abeta peptides are rich in intermolecular beta-sheet, the precise secondary structure of Abeta in the aggregates remains unclear. To identify the amino acid residues involved in the beta-sheet formation, 34 proline-substituted mutants of Abeta42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in beta-sheet, whereas they are easily accommodated in beta-turn as a Pro-X corner. Among the mutants at positions 15-32, only E22P-Abeta42 extensively aggregated with stronger neurotoxicity than wild-type Abeta42, suggesting that the residues at positions 15-21 and 24-32 are involved in the beta-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Abeta42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Abeta42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Abeta42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Abeta42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the beta-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Abeta42 and Abeta40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Abeta42. The identification of the beta-sheet region of Abeta42 is a basis for designing new aggregation inhibitors of Abeta peptides.  相似文献   

2.
Cerebral amyloid angiopathy (CAA) due to beta-amyloid (Abeta) is one of the specific pathological features of familial Alzheimer's disease. Abeta mainly consisting of 40- and 42-mer peptides (Abeta40 and Abeta42) exhibits neurotoxicity and aggregative abilities. All of the variants of Abeta40 and Abeta42 found in CAA were synthesized in a highly pure form and examined for neurotoxicity in PC12 cells and aggregative ability. All of the Abeta40 mutants at positions 22 and 23 showed stronger neurotoxicity than wild-type Abeta40. Similar tendency was observed for Abeta42 mutants at positions 22 and 23 whose neurotoxicity was 50-200 times stronger than that of the corresponding Abeta40 mutants, suggesting that these Abeta42 mutants are mainly involved in the pathogenesis of CAA. Although the aggregation of E22G-Abeta42 and D23N-Abeta42 was similar to that of wild-type Abeta42, E22Q-Abeta42 and E22K-Abeta42 aggregated extensively, supporting the clinical evidence that Dutch and Italian patients are diagnosed as hereditary cerebral hemorrhage with amyloidosis. In contrast, A21G mutation needs alternative explanation with the exception of physicochemical properties of Abeta mutants. Attenuated total reflection-Fourier transform infrared spectroscopy spectra suggested that beta-sheet content of the Abeta mutants correlates with their aggregation. However, beta-turn is also a critical secondary structure because residues at positions 22 and 23 that preferably form two-residue beta-turn significantly enhanced the aggregative ability.  相似文献   

3.
The primary component of amyloid plaque in the brains of Alzheimer's patients is the 42 residue amyloid-beta-peptide (Abeta42). Although the amino acid residue sequence of Abeta42 is known, the molecular determinants of Abeta amyloidogenesis have not been elucidated. To facilitate an unbiased search for the sequence determinants of Abeta aggregation, we developed a genetic screen that couples a readily observable phenotype in E. coli to the ability of a mutation in Abeta42 to reduce aggregation. The screen is based on our finding that fusions of the wild-type Abeta42 sequence to green fluorescent protein (GFP) form insoluble aggregates in which GFP is inactive. Cells expressing such fusions do not fluoresce. To isolate variants of Abeta42 with reduced tendencies to aggregate, we constructed and screened libraries of Abeta42-GFP fusions in which the sequence of Abeta42 was mutated randomly. Cells expressing GFP fusions to soluble (non-aggregating) variants of Abeta42 exhibit green fluorescence. Implementation of this screen enabled the isolation of 36 variants of Abeta42 with reduced tendencies to aggregate. The sequences of most of these variants are consistent with previous models implicating hydrophobic regions as determinants of Abeta42 aggregation. Some of the variants, however, contain amino acid substitutions not implicated in pre-existing models of Abeta amyloidogenesis.  相似文献   

4.
Aggregation of the amyloid beta peptides (A beta 1-42 and A beta 1-40) plays a pivotal role in pathogenesis of Alzheimer's disease. Although it is widely accepted that the aggregates of A betas mainly consist of beta-sheet structure, the precise aggregation mechanism remains unclear. To identify amino acid residues that are important for the beta-sheet formation, a series of proline-substituted mutants of A beta 1-42 peptides at positions 19-26 was synthesized in a highly pure form and their aggregation ability and neurotoxicity on PC12 cells were investigated. All proline-substituted A beta 1-42 mutants except for 22P- and 23P-A beta 1-42 were hard to aggregate and showed weaker cytotoxicity than wild-type A beta 1-42, suggesting that the residues at positions 19-21 and 24-26 are important for the beta-sheet formation. In contrast, 22P-A beta 1-42 extensively aggregated with stronger cytotoxicity than wild-type A beta 1-42. Since proline has a propensity for beta-turn structure as a Pro-X corner, these data implicate that beta-turn formation at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of A beta peptides.  相似文献   

5.
A critical event in Alzheimer's disease is the transition of Abeta peptides from their soluble forms into disease-associated beta-sheet-rich conformers. Structural analysis of a complete D-amino acid replacement set of Abeta(1-42) enabled us to localize in the full-length 42-mer peptide the region responsible for the conformational switch into a beta-sheet structure. Although NMR spectroscopy of trifluoroethanol-stabilized monomeric Abeta(1-42) delineated two separated helical domains, only the destabilization of helix I, comprising residues 11-24, caused a transition to a beta-sheet structure. This conformational alpha-to-beta switch was directly accompanied by an aggregation process leading to the formation of amyloid fibrils.  相似文献   

6.
Cerebral amyloid angiopathy (CAA) due to amyloid beta (A beta) deposition is a key pathological feature of Alzheimer's disease (AD), especially in some form of familial Alzheimer's disease (FAD) including hereditary cerebral hemorrhage with amyloidosis-Dutch type. A beta mainly consists of 40- and 42-mer peptides (Abeta 1-40 and A beta 1-42), which accumulate in senile plaques of AD brains and show neurotoxicity for cultured nerve cells. We synthesized all variant forms of A beta 1-42 associated with reported FAD, such as A21G (Flemish), E22Q (Dutch), E22K (Italian), E22G (Arctic), and D23N (Iowa) along with three potential mutants by one point missense mutation (E22A, E22D, and E22V) in a highly pure form, and examined their ability to aggregate and their neurotoxicity in PC12 cells. The mutants at positions 22 and 23 showed potent aggregative ability and neurotoxicity whereas the potential mutants did not, indicating that A beta 1-42 mutants at positions 22 and 23 play a critical role in FAD of Dutch-, Italian-, Arctic-, and Iowa-types. However, Flemish-type FAD needs alternative explanation except the aggregation and neurotoxicity of the corresponding A beta 1-42 mutant.  相似文献   

7.
Conformational studies on amyloid beta peptide (Abeta) in aqueous solution are complicated by its tendency to aggregate. In this study, we determined the atomic-level structure of Abeta(28-42) in an aqueous environment. We fused fragments of Abeta, residues 10-24 (Abeta(10-24)) or 28-42 (Abeta(28-42)), to three positions in the C-terminal region of ribonuclease HII from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). We then examined the structural properties in an aqueous environment. The host protein, Tk-RNase HII, is highly stable and the C-terminal region has relatively little interaction with other parts. CD spectroscopy and thermal denaturation experiments demonstrated that the guest amyloidogenic sequences did not affect the overall structure of the Tk-RNase HII. Crystal structure analysis of Tk-RNase HII(1-197)-Abeta(28-42) revealed that Abeta(28-42) forms a beta conformation, whereas the original structure in Tk-RNase HII(1-213) was alpha helix, suggesting beta-structure formation of Abeta(28-42) within full-length Abeta in aqueous solution. Abeta(28-42) enhanced aggregation of the host protein more strongly than Abeta(10-24). These results and other reports suggest that after proteolytic cleavage, the C-terminal region of Abeta adopts a beta conformation in an aqueous environment and induces aggregation, and that the central region of Abeta plays a critical role in fibril formation. This study also indicates that this fusion technique is useful for obtaining structural information with atomic resolution for amyloidogenic peptides in aqueous environments.  相似文献   

8.
Liao MQ  Tzeng YJ  Chang LY  Huang HB  Lin TH  Chyan CL  Chen YC 《FEBS letters》2007,581(6):1161-1165
Aggregated beta-amyloid (Abeta) peptides are neurotoxic and cause neuronal death both in vitro and in vivo. Although the formation of a beta-sheet structure is usual required to form aggregates, the relationship between neurotoxicity and the Abeta sequence remains unclear. To explore the correlation between Abeta sequence, secondary structure, aggregative ability, and neurotoxicity, we utilized both full-length and fragment-truncated Abeta peptides. Using a combination of spectroscopic and cellular techniques, we demonstrated that neurotoxicity and aggregative ability are correlated while the relationship between these characteristics and secondary structure is not significant. The hydrophobic C-terminus, particularly the amino acids of 17-21, 25-35, and 41-42, is the main region responsible for neurotoxicity and aggregation. Deleting residues 17-21, 25-35 or 41-42 significantly reduced the toxicity. On the other hand, truncation of the peptides at either residues 22-24 or residues 36-40 had little effect on toxicity and aggregative ability. While the N-terminal residues 1-16 may not play a major role in neurotoxicity and aggregation, a lack of N-terminal fragment Abeta peptide, (e.g. Abeta17-35), does not display the neurotoxicity of either full-length or 17-21, 25-35 truncated Abeta peptides.  相似文献   

9.
Aggregation of Abeta peptides is a seminal event in Alzheimer's disease. Detailed understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Here comparative conformational and aggregation studies using CD spectroscopy and thioflavine T fluorescence assay are presented. As a model peptide, the 11-28 fragment of Abeta was used. This model peptide is known to contain the core region responsible for Abeta aggregation. The structural and aggregational behaviour of the peptide was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21-23 (A21G, E22K, E22G, E22Q and D23N). In HFIP (hexafluoro-2-propanol), a strong alpha-helix inducer, the CD spectra revealed an unexpectedly high amount of beta-sheet conformation. The aggregation process of Abeta(11-28) variants provoked by water addition to HFIP was found to be consistent with a model of an alpha-helix-containing intermediate. The aggregation propensity of all Abeta(11-28) variants was also compared and discussed.  相似文献   

10.
Beta-amyloid peptides (Abeta) are the main protein components of neuritic plaques and are important in the pathogenesis of Alzheimer's disease. It is reported that Abeta itself is not toxic; however, it becomes toxic to neuronal cells once it has aggregated into amyloid fibrils by peptide-peptide interactions. In this study, to specify the molecular mechanism of aggregation, a novel fluorescence assay was designed. For this purpose, possible partial peptides (38 types of 5-mer) were synthesized on solid-phase. The molecular interactions were examined by a fluorescence probe possessing Lys-Leu-Val-Phe-Phe (KLVFF) as a molecular recognition site. KLVFF is known to be a minimum sequence for formation of the Abeta aggregate. A specific interaction was observed between labeled and immobilized KLVFF. It suggests that the aggregation of Abeta was controlled by the recognition of KLVFF itself by hydrophobic and electrostatic interactions.  相似文献   

11.
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.  相似文献   

12.
Alzheimer's disease is characterized by amyloid deposits in the parenchyma and vasculature of the brain. The plaques are mainly composed of amyloid beta (Abeta) peptides ending in residues 40 and 42. Novel longer Abeta peptides were found in brain homogenates of mouse models of Alzheimer's disease and human brain tissue of patients carrying the familial amyloid precursor protein V717F mutation. The biophysical characteristics of these longer Abeta peptides and their role in plaque formation are not understood. We chose to focus our studies on Abeta peptides ending in residues Ile45, Val46 and Ile47 as these peptides were identified in human brain tissue. A combination of circular dichroism and electron microscopy was used to characterize the secondary and tertiary structures of these peptides. All three longer Abeta peptides consisted mainly of a beta-sheet secondary structure. Electron microscopy demonstrated that these beta-structured peptides formed predominantly amorphous aggregates, which convert to amyloid fibres over extended time periods. As these longer peptides may act as seeds for the nucleation of fibrils composed predominantly of shorter amyloid peptides, these interactions were studied. All peptides accelerated the random to beta-structural transitions and fibril formation of Abeta40 and 42.  相似文献   

13.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

14.
The role of peptides Abeta40 and Abeta42 in the early pathogenesis of Alzheimer's disease (AD) is frequently emphasized in the literature. It is known that Abeta42 is more prone to aggregation than Abeta40, even though they differ in only two (IA) amino acid residues at the C-terminal end. A direct comparison of the ensembles of conformations adopted by the monomers in solution has been limited by the inherent flexibility of the unfolded peptides. Here, we characterize the conformations of Abeta40 and Abeta42 in water by using a combination of molecular dynamics (MD) and measured scalar (3)J(HNHalpha) data from NMR experiments. We perform replica exchange MD (REMD) simulations and find that classical forcefields reproduce the NMR data quantitatively when the sampling is extended to the microseconds time-scale. Using the quantitative agreement of the NMR data as a validation of the model, we proceed to compare the conformational ensembles of the Abeta40 and Abeta42 peptide monomers. Our analysis confirms the existence of structured regions within the otherwise flexible Abeta peptides. We find that the C terminus of Abeta42 is more structured than that of Abeta40. The formation of a beta-hairpin in the sequence (31)IIGLMVGGVVIA involving short strands at residues 31-34 and 38-41 (in bold) reduces the C-terminal flexibility of the Abeta42 peptide and may be responsible for the higher propensity of this peptide to form amyloids.  相似文献   

15.
Protein misfolding and deposition underlie an increasing number of debilitating human disorders. Alzheimer's disease is pathologically characterized by the presence of numerous insoluble amyloid plaques in the brain, composed primarily of the 42 amino acid human beta-amyloid peptide (Abeta42). Disease-linked mutations in Abeta42 occur in or near a central hydrophobic cluster comprising residues 17-21. We exploited the ability of green fluorescent protein to act as a reporter of the aggregation of upstream fused Abeta42 variants to characterize the effects of a large set of single-point mutations at the central position of this hydrophobic sequence as well as substitutions linked to early onset of the disease located in or close to this region. The aggregational properties of the different protein variants clearly correlated with changes in the intrinsic physicochemical properties of the side chains at the point of mutation. Reduction in hydrophobicity and beta-sheet propensity resulted in an increase of in vivo fluorescence indicating disruption of aggregation, as confirmed by the in vitro analysis of synthetic Abeta42 variants. The results confirm the key role played by the central hydrophobic stretch on Abeta42 deposition and support the hypothesis that sequence tunes the aggregation propensities of polypeptides.  相似文献   

16.
Formation of the intermolecular beta-sheet is a key event in the aggregation of 42-residue amyloid-beta (Abeta42). We have recently identified a physiological and toxic conformer, the turn positions of which are slightly different from each other, in the aggregates of E22K-Abeta42 (one of the mutants related to cerebral amyloid angiopathy). However, it remains unclear whether the intermolecular beta-sheet in the E22K-Abeta42 aggregates is parallel or antiparallel. We prepared an equal mixture of E22K-Abeta42 aggregates labeled at C(alpha) and those labeled at C=O with (13)C, whose intermolecular (13)C-(13)C distance was estimated by solid-state NMR using rotational resonance (R2). The intermolecular proximity of beta-strands at positions 21 and 30 was less than 6 A, supporting the existence of the intermolecular parallel beta-sheet in the E22K-Abeta42 aggregates as well as in wild-type Abeta42 aggregates. The results also suggest that each conformer would not accumulate alternately, but form a relatively large assembly.  相似文献   

17.
Accumulation of aggregated amyloid-beta peptide (Abeta) in the brain is a pathological hallmark of Alzheimer's disease (AD). In vitro studies indicate that the 40- to 42-residue Abeta peptide in solution will undergo self-assembly leading to the transient appearance of soluble protofibrils and ultimately to insoluble fibrils. The Abeta peptide is amphiphilic and accumulates preferentially at a hydrophilic/hydrophobic interface. Solid surfaces and air-water interfaces have been shown previously to promote Abeta aggregation, but detailed characterization of these aggregates has not been presented. In this study Abeta(1-40) introduced to aqueous buffer in a two-phase system with chloroform aggregated 1-2 orders of magnitude more rapidly than Abeta in the buffer alone. The interface-induced aggregates were released into the aqueous phase and persisted for 24-72 h before settling as a visible precipitate at the interface. Thioflavin T fluorescence and circular dichroism analyses confirmed that the Abeta aggregates had a beta-sheet secondary structure. However, these aggregates were far less stable than Abeta(1-40) protofibrils prepared in buffer alone and disaggregated completely within 3 min on dilution. Atomic force microscopy revealed that the aggregates consisted of small globules 4-5 nm in height and long flexible fibers composed of these globules aligned roughly along a longitudinal axis, a morphology distinct from that of Abeta protofibrils prepared in buffer alone. The relative instability of the fibers was supported by fiber interruptions apparently introduced by brief washing of the AFM grids. To our knowledge, unstable aggregates of Abeta with beta-sheet structure and fibrous morphology have not been reported previously. Our results provide the clearest evidence yet that the intrinsic beta-sheet structure of an in vitro Abeta aggregate depends on the aggregation conditions and is reflected in the stability of the aggregate and the morphology observed by atomic force microscopy. Resolution of these structural differences at the molecular level may provide important clues to the further understanding of amyloid formation in vivo.  相似文献   

18.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

19.
Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that is known to suppress aggregation and toxicity of Abeta42 in vitro. In the Drosophila brain, Abeta42Arc formed more oligomers and deposits than did wild type Abeta42, while Abeta42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Abeta peptides. Surprisingly, however, Abeta42art caused earlier onset of memory defects than Abeta42. More remarkably, each Abeta induced qualitatively different pathologies. Abeta42Arc caused greater neuron loss than did Abeta42, while Abeta42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Abeta aggregates: Abeta42Arc formed large deposits in the cell body, Abeta42art accumulated preferentially in the neurites, while Abeta42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Abeta42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo.  相似文献   

20.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号