首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The quantity of nucleolei during microsporogenesis of wheat, rye and F1 of wheat-rye hybrids has been investigated. Dependence of nucleoli quantity from microsporogenesis stage and number of nucleolar organizer regions in chromosomes have been shown. The volumes of nuclei and nucleoli as well as nucleus-nucleolus ratio have been calculated. The changes of these indices during microsporogenesis were regular. The possibility of using cariometrical indices as cytological markers of rRNA gene expression in the process of microsporogenesis has been substantiated.  相似文献   

2.
The expression of the ribosomal RNA (rRNA) genes from rye, located within the nucleolus organizer regions (NORs), is repressed by cytosine methylation in wheat x rye hybrids and in triticale, as consequence of nucleolar dominance. Our previous study revealed that bread wheat cultivars with a maximum number of four Ag-NORs presented high level of rDNA cytosine methylation when compared to others with a maximum of six Ag-NORs. In order to evaluate the inheritance of the Ag-NORs number and NOR methylation patterns, we produced F1 hybrids between bread wheat cultivars with four Ag-NORs and bread wheat cultivars with six Ag-NORs (in the direct and reciprocal senses). The F2 progenies of these F1 hybrids were also evaluated for the NOR number and methylation patterns. Parent bread wheat cultivars with a maximum of four Ag-NORs after treated with 5-azacytidine evidenced a maximum of six Ag-NORs per metaphase cell and a maximum of six nucleoli per interphase nucleus, confirming that the expression of the rRNA genes in bread wheat is related to cytosine methylation. Most of the F1 hybrids showed a maximum number of four or six Ag-NORs, similarly to that of the female parent suggesting a non-mendelian inheritance, while other hybrids presented four or six Ag-NORs in both senses of the cross. The F1 NOR methylation patterns showed some fragments common to their parents but also novel fragments suggesting genomic and/or chromosome rearrangements after hybridization. Despite the different NOR patterns among the parents, an invariable NOR pattern was found among the F1 plants suggesting a tendency to stability, which was also transmitted to the F2. The F2 progenies showed plants with a maximum of four, five and/or six Ag-NORs. The ratio of plants with four, five and/or six Ag-NORs per F2 progeny was variable and did not follow any specific mendelian proportion. These results allowed us to suggest that the inheritance of the number of Ag-NORs by the F1 and F2 plants did not follow any mendelian inheritance and were not correlated to NOR methylation patterns in contrast to what was verified for their parents.  相似文献   

3.
The genetic control of nucleolus formation in wheat   总被引:3,自引:0,他引:3  
The wheat variety Chinese Spring has four pairs of nucleolus organisers of known rDNA content. The genetic control of these has been investigated in root tip cells by cytologically scoring the number of nucleoli per cell in (a) aneuploid derivatives each having a different dosage of a particular chromosome or chromosome arm and (b) in substitution lines where nucleolus organiser chromosomes have been replaced by homologues possessing different amounts of rDNA. It has been assumed that nucleolus organiser activity is correlated with nucleolus size and thus with the presence of a cytologically visible nucleolus. Those nucleolus organisers on chromosomes 1A and 5D, which together possess only 10% of the rDNA form a visible nucleolus only infrequently in the presence of the larger nucleolus organisers on chromosomes 1B and 6B. When a major pair of organisers on chromosomes 1B or 6B is deleted, the smaller nucleolus organisers form a visible nucleolus more frequently. Similarly, when the major nucleolus organisers are replaced by organisers with less rDNA, the smaller nucleolus organisers form visible nucleoli more frequently. When a small nucleolus organiser is replaced by one with much more rDNA, a larger nucleolus is formed. These and other findings lead to the general conclusions that there is a frequently, but not invariably, seen correlation between rRNA gene number and nucleolus size. However the relative size of the nucleolus formed depends principally upon the proportion of the total active rRNA genes in the cell which are localised at the nucleolus organiser in question. Varying the dosage of at least 13 non nucleolus organiser chromosomes also resulted in changes in the number of visible nucleoli per cell. This implies the genetic control of individual nucleolus organisers is complex. Inclusion in the wheat genome of the nucleolus organiser chromosome from Aegilops umbellulata, causes suppression of the wheat nucleolus organisers, the Aegilops umbellulata organiser remaining active. This suppression is similar to that observed in many interspecific plant and animal hybrids.  相似文献   

4.
Cytosine methylation and nucleolar dominance in cereal hybrids   总被引:5,自引:0,他引:5  
In wheat-rye hybrids the nucleolus organizer regions (NORs), the sites of ribosomal RNA genes, from rye are suppressed. Wheat and wheat-rye hybrid genetic stocks containing different numbers of wheat and rye nucleolus organizers, as well as addition lines and rye-barley hybrids, were used in Southern hybridization experiments to determine the cause of nucleolar dominance and suppression in cereal hybrids. Based on the use of restriction endonucleases that cleave near the ends of the spacer unit and an additional, methylation-sensitive enzyme, HpaII, which does not recognize the CCGG restriction site if the internal C is methylated, an indirect method of assaying NOR expression was established. The results indicated that cleavage by the HpaII enzyme of the rye NOR sequences, is reduced when major NORs from other cereals were present. The reduction in the number of rye rRNA genes containing an unmethylated CCGG site in the promoter was associated with the suppression of the rye nucleolus. These results are consistent with a model in which promoter and upstream regulatory repeats of ribosomal RNA genes compete for limited concentrations of regulatory proteins, and genes that are methylated at key binding sites fail to engage these regulatory proteins and thus remain inactive. Received: 15 November 1996 / Accepted: 19 March 1997  相似文献   

5.
Two pairs of chromosomes (1U and 5U) in Aegilops umbellulata possess ribosomal RNA genes. This has been proven by studying wheat plants into which 1U and 5U chromosomes have been introduced separately. These plants have more ribosomal RNA genes than the recipient wheat plants and additional clusters of rDNA when examined by in situ hybridisation. The repeating rDNA unit in Aegilops umbellulata is longer than most of the units in the wheat variety Chinese Spring, the additional DNA probably being in the non-transcribed spacer. This was determined from restriction endonuclease maps of rDNA. In Chinese Spring plants possessing 1U or 5U chromosomes, the largest nucleoli are formed on 1U or 5U chromosomes and the wheat nucleolus organisers form micronucleoli. This is not because the nucleolus organisers on chromosomes 1U and 5U have many more rRNA genes than wheat nucleolus organisers. It is suggested that the Aegilops umbellulata nucleolus organisers are dominant over those of wheat because they compete more effectively for some limiting factor. — The partial inactivation of the wheat nucleolus organisers by chromosomes 1U or 5U does not result in a reduced total nucleolus volume in root tip or pollen mother cells, because of the compensation by the nucleolus organisers of chromosomes 1U or 5U. The amount of RNA in seedlings is not markedly affected by the partial inactivation of the wheat nucleolus organisers.  相似文献   

6.
Basic studies on hybrid wheat breeding   总被引:2,自引:0,他引:2  
Summary The nuclei of 12 common wheats (genome constitution AABBDD) were placed into the cytoplasms of Aegilops kotschyi and Ae. variabilis (both CuCuSvSv) by repeated backcrosses. Using these nucleus-cytoplasm hybrids, male sterility-fertility restoration relationship was investigated. Male sterility was expressed by these cytoplasms only in Slm, Splt and Mch. The other nine common wheat nuclei gave normal fertility against these cytoplasms. These cytoplasms were compared with the Triticum timopheevi cytoplasm that is now widely used in the hybrid wheat breeding program in order to investigate their effects on important agronomic traits of the 12 common wheats: The kotschyi and variabilis cytoplasms were as good as the timopheevi cytoplasm in this respect.The F1 hybrid between (kotschyi)- or (variabilis)-Splt and CS showed normal fertility. Segregation of the fertiles and steriles in their F2 generations followed the simple Mendelian fashion, i.e., 3 fertile1 sterile. Thus, the fertility restoration in this case is mainly controlled by a single dominant gene which will be designated as Rfv1. To determine its location, ditelo-lBS and -lBL of CS were crossed as male parents to male sterile (kotschyi)- and (variabilis)-Splt. The F1 hybrids between the male sterile Spit's and CS ditelo-lBS became male fertile, while those between the male sterile Spit's and CS ditelo-lBL became completely male sterile. Thus, the location of the gene Rfv1 has been determined to be on the short arm of chromosome lB of CS. Furthermore, a close relationship between the fertility-restoring genes and the nucleolus organizer region was pointed out.Finally, the schemes of breeding the male sterile lines of a cultivar with these cytoplasms, and its maintainer line were formulated. The following two points were considered as the advantages of the present male sterility-fertility restoration system over that using the timopheevi cytoplasm in breeding hybrid wheat: (1) easier fertility restoration in F1 hybrids, and (2) no need of breeding the restorer line.This work was supported by a Grand-in-Aid from the Ministry of Education, No. 386002. Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 420.  相似文献   

7.
Summary This work reports on the production and yield assessment of F1 wheat hybrids from crosses between cytoplasmic male sterile lines, with Triticum timopheevi cytoplasm, and cultivars with fertility restoring genes.In four years of trials conducted between 1974 and 1977, only three F1 hybrids out of a total of 168 yielded significantly more than the control variety Maris Huntsman, which currently occupies a substantial proportion of the area planted with winter wheat in the UK. Because of the rapid increase in yield of conventional wheat varieties, which has already led to varieties which outyielded Maris Huntsman, the yield advantage of these F1 hybrids is insufficient for them to be developed as commercial varieties.The efficient production of uncontaminated male sterile and F1 seed presents problems of isolation and a difficult biological problem in increasing the cross breeding potential of maintainer and restorer lines. These together with selection for other parental characters such as restoration, short straw and resistance to sprouting make the development of F1 hybrids more difficult and expensive than that of conventional varieties.  相似文献   

8.
Microphoretic purine-pyrimidine analyses of the ribonucleic acid (RNA) in nucleoli, nucleoplasm, cytoplasm, and yolk nuclei of spider oocytes have been carried out. The material necessary for the analyses was isolated by micromanipulation. Determinations of the amounts of RNA in the different parts of the cell were also performed. No differences between the composition of RNA in the nucleolus and the cytoplasm could be disclosed. Nucleoplasmic RNA was, on the other hand, distinctly different from that in the nucleolus and in the cytoplasm. The difference lies in the content of adenine, which is highest in nucleoplasmic RNA. The few analyses carried out on yolk nuclei showed their RNA to be variable in composition with a tendency to high purine values. The cytoplasm contains about 99 per cent of the total RNA in these cells, the nucleoplasm about 1 per cent, and the nucleolus not more than 0.3 per cent, although the highest concentrations are found in these latter structures. When considered in the light of other recent findings the results are compatible with the view that nucleolar RNA is the precursor of cytoplasmic RNA.  相似文献   

9.
以直立型扁蓿豆幼苗为试验材料,采用cDNA-AFLP技术分析扁蓿豆在低温胁迫诱导下的基因表达差异.结果显示,利用筛选的64对引物组合,对0℃低温处理3~5叶期扁蓿豆幼苗的叶片cDNA进行扩增,共获得549条差异表达的转录衍生片段(TDFs).选取上调表达较好的43条片段进行克隆、测序、Blastx比对和功能分析,其中32个TDFs的蛋白序列与基础代谢、信号转导、转录因子、防御等功能有关,11个TDFs为假设蛋白、未知蛋白或没有找到一致序列.利用荧光定量PCR对3种不同上调表达差异片段进行验证,结果可从数值上更准确地显示差异片段在低温胁迫过程中的相对表达量.  相似文献   

10.
In each ovariole of Gerris remigis, nurse cells arise by mitotic divisions at the anterior end of the germarium. These cells enlarge as they move posteriorly. This size increase is possibly caused by fusion of cells, but probably by endopolyploidy as well. The nurse cells then establish connections with a central trophic core, which receives the products of subsequent nurse cell degradation. Two possible pathways of nuclear degradation are suggested: one involves the condensation of chromatin within the nucleus; the other, the release of DNA as fine granules into the cytoplasm. Cytoplasmic areas containing such DNA are also rich in proteinaceous granules, but have a meager content of RNA. The remainder of the cytoplasm of the mature nurse cells contains a high concentration of RNA, as do the nucleoli. Posteriorly the trophic core connects via nutritive cords with each developing oocyte in the prefollicular region and in the anterior vitellarium. RNA is apparently contributed to the ooplasm via the trophic stream. Patches of cytoplasmic DNA are present in the young oocytes; the origin and fate of this DNA is uncertain. During early oocyte maturation chromosomal stainability decreases, and the nucleolus enlarges. In previtellogenic stages, numerous proteinaceous bodies appear in association with the nucleolus-chromosome complex. These bodies, like the nucleolus, have only a low RNA content. They may pass to the cytoplasm, but cannot be traced with certainty. During the latter part of this period a complex population of small proteinaceous and lipid preyolk bodies accumulates peripherally in the oocyte. Definitive protein and lipid yolk are probably derived by the enlargement and inward migration of these bodies. The oocytes are each surrounded by a layer of follicle cells proliferated in the prefollicular region. These become binucleate and enlarge as the enclosed oocytes grow and elongate. RNA also increases in the nucleoli and cytoplasm of the follicle cells as they move posteriorly in the vitellarium. There is no evidence of transfer of nucleic acids or protein from the follicle cells to the oocyte. The nurse cells are therefore implicated as the major source of nucleic acids for the maturing oocyte.  相似文献   

11.
为了探讨低氧对小麦根端分生细胞核仁结构和功能的影响,本实验以普通小麦为材料,用低氧水处理其根尖,按常规细胞制片、银染、电镜观察、间接免疫荧光染色和半定量PCR分析等手段开展研究.观察发现:(1)低氧水处理后小麦核仁结构发生膨胀、突出、进而凝集、内部出现空泡、细微结构消失、核仁通道结构异常、甚至解体等一系列变异现象.(2)间接免疫荧光染色技术观察看到,低氧水处理后小麦核仁内的核磷蛋白B23向核质甚至胞质扩散.(3)半定量PCR分析显示,低氧处理后rRNA基因的表达量较对照明显降低,而且C23的表达信号几乎检测不到,表明核糖体RNA和核仁蛋白C23基因的表达均显著下调,低氧严重抑制它们的转录.研究证明,低氧除了对小麦根端分生细胞核仁结构有破坏作用外,还严重抑制核仁的功能.  相似文献   

12.
Isolated nuclei and nucleoli of ungerminated pea embryos have been analyzed chemically for their content of DNA, RNA, zinc, iron, phosphorus, and protein sulfhydryl groups. The values obtained cannot be considered to represent the whole of the living nucleolar body as an undetermined amount of material is extracted from nucleoli in the course of their isolation. Only negligible amounts of DNA have been found in the isolated nucleoli; most of the DNA released on disruption of nuclei appears in a fraction showing very few structures under the light microscope. RNA is more concentrated in the nucleolus than in the nucleus or cytoplasm, but since nucleolar protein is 6 per cent of nuclear and less than 1 per cent of cytoplasmic protein, the total amount of nucleolar RNA is comparatively small. None of the other components listed occurs in high concentration in either nucleus or nucleolus.  相似文献   

13.
Some Chemical Properties of Isolated Pea Nucleoli   总被引:2,自引:2,他引:0       下载免费PDF全文
Isolated nuclei and nucleoli of ungerminated pea embryos have been analyzed chemically for their content of DNA, RNA, zinc, iron, phosphorus, and protein sulfhydryl groups. The values obtained cannot be considered to represent the whole of the living nucleolar body as an undetermined amount of material is extracted from nucleoli in the course of their isolation. Only negligible amounts of DNA have been found in the isolated nucleoli; most of the DNA released on disruption of nuclei appears in a fraction showing very few structures under the light microscope. RNA is more concentrated in the nucleolus than in the nucleus or cytoplasm, but since nucleolar protein is 6 per cent of nuclear and less than 1 per cent of cytoplasmic protein, the total amount of nucleolar RNA is comparatively small. None of the other components listed occurs in high concentration in either nucleus or nucleolus.  相似文献   

14.
Hexaploid bread wheat was derived from a hybrid cross between a cultivated form of tetraploid Triticum wheat (female progenitor) and a wild diploid species, Aegilops tauschii Coss. (male progenitor). This cross produced a fertile triploid F1 hybrid that set hexaploid seeds. The identity of the female progenitor is unknown, but various cultivated tetraploid Triticum wheats exist today. Genetic and archaeological evidence suggests that durum wheat (T. turgidum ssp. durum) may be the female progenitor. In previous studies, however, F1 hybrids of durum wheat crossed with Ae. tauschii consistently had low levels of fertility. To establish an empirical basis for the theory of durum wheat being the female progenitor of bread wheat, we crossed a durum wheat cultivar that carries a gene for meiotic restitution with a line of Ae. tauschii. F1 hybrids were produced without using embryo rescue techniques. These triploid F1 hybrids were highly fertile and spontaneously set hexaploid F2 seeds at the average selfed seedset rate of 51.5%. To the best of our knowledge, this is the first example of the production of highly fertile F1 hybrids between durum wheat and Ae. tauschii. The F1 and F2 hybrids are both similar morphologically to bread wheat and have vigorous growth habits. Cytological analyses of F1 male gametogenesis showed that meiotic restitution is responsible for the high fertility of the triploid F1 hybrids. The implications of these findings for the origin of bread wheat are discussed.  相似文献   

15.
The 1BL.1RS translocations between wheat (Triticum aestivum L.) and rye (Secale cereale L.) are widely used in bread wheat breeding programs, but all modern wheat cultivars with the 1BL.1RS have shown genetic vulnerability due to one rye source – a German cultivar, Petkus. We have developed, a new 1BL.1RS wheat-rye translocation line from the backcross of the F1 hybrid of wheat cv. Olmil and rye cv. Paldanghomil, both cultivars from Korea. The GISH technique was applied to identify the presence of rye chromatin in 467 BC1F6 lines selected from 77 BC1F5 lines. Only one line, Yw62–11, showed wheat-rye translocated chromosomes, with a somatic chromosome number of 2n=42. C-banding patterns revealed that the translocated chromosome was 1BL.1RS, showing prominent bands in the terminal and sub-terminal regions of the short arm as well as in the centromeric region and terminal region of the long arm. This new 1BL.1RS translocation line formed 21 bivalents like common wheat at meiotic metaphase I, thereby showing complete homology. Received: 28 February 2001 / Accepted: 17 April 2001  相似文献   

16.
A procedure was developed for isolation of variously sized nucleoli in order to study the mechanism of nucleolar formation from multiple nucleolar organizers and to compare the compositions of different-sized nucleoli from Ehrlich ascites tumor cells. Relatively small nucleoli and large nucleoli from Ehrlich ascites tumor cells were separated by centrifugation at 400 g for 5 min in a layer of 0.34 M sucrose over 0.88 M sucrose. Small nucleoli remained in the 0.34 M sucrose layer while the large nucleoli accumulated in the 0.88 M sucrose.Three fractions, provisionally named small, intermediate and large nucleoli, containing 0.33, 0.41 and 0.84 pg DNA/nucleolus, respectively, were separated. Unfractionated nucleoli contained 0.59 pg DNA/nucleolus. The RNA content also increased with the size of the nucleolus and no significant difference was observed in the RNA/DNA ratios in the three fractions. Large nucleoli incorporated more [3H]uridine and [32P]orthophosphate into RNA than did small nucleoli, but the base compositions of the RNAs extracted from the different-sized nucleoli were similar. No significant fragmentation occurred on sonication of large nucleoli for 3 min, so the observed difference in the DNA contents was not due to mechanical damage of the nucleoli.The DNAs of these different-sized nucleoli were analysed on CsCl gradients. The nucleoli contained similar percentages of satellite DNA (20–22%) which were also similar to those of total, unfractionated nucleoli. Approx. 10% of the extranucleolar DNA is satellite DNA—thus the nucleolar fractions were probably not appreciably contaminated with extranucleolar DNA. The DNA of small nucleoli contained a slightly lower percentage (0.058%) of ribosomal cistrons than large nucleoli (0.081%). This means that the higher content of DNA in the large nucleoli is not merely due to longer sized chromatin with extra regions of the vicinity of nucleolar organizers. Thus these results suggest that the total content of ribosomal cistrons/nucleolus is roughly proportional to the DNA content of the nucleoli, at least in Ehrlich ascites tumor cells. Namely, the number of ribosomal cistrons per nucleolus for small, intermediate and large nucleoli is 40, 60 and 130, respectively.  相似文献   

17.
Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA).  相似文献   

18.
Summary The origin of the nucleolus-like bodies (nucleoloids) released into the cytoplasm during the meiotic divisions in pollen mother cells ofLilium has been traced. Chains of accessory nucleoli are formed at the nucleolus organising regions (NOR) of the nucleolar chromosomes during pachytene and diplotene while the parent-cell nucleolus is undergoing dissolution. Autoradiography using3H-uridine as a tracer shows that this involves the resumption of RNA synthesis at the NOR, although no new synthesis is associated with the parent-cell nucleolus. The accessory nucleoli are released from the NOR to become distributed throughout the nucleus in late prophase; there is no evidence that they contain DNA. In division phases, their material is probably held at the chromosome surfaces as part of the metaphase sheath. After the divisions, globuli are re-formed, and these eventually appear as the nucleoloids after detachment into the cytoplasm. It seems improbable that a gene amplification phase is associated with accessory nucleolus or nucleoloid formation. Evidence from a wide range of species suggests that the production of cytoplasmic nucleoloids during microsporogenesis is a general phenomenon among angiosperms, probably linked with the rapid build-up of ribosome numbers which follows upon the period of elimination in the meiotic prophase.  相似文献   

19.
The metaphase I and anaphase I stages of meiosis of wheat×rye hybrids carrying the ph1b mutation were analyzed by genomic in situ hybridization. This technique allows distinction between three different types of wheat-rye associations in metaphase I configurations as well as detection of wheat-rye recombinant chromosomes in anaphase I cells. The frequency of associations between wheat and rye chromosomes greatly exceeded the level of wheat-rye recombination found in the three hybrids examined. Extremely distal associations, which account for about 50% of the total wheat-rye metaphase I chromosomal pairing, can explain such a discrepancy between metaphase I and anaphase I data. It is further discussed whether these associations reflect very distally located chiasmata or nonchiasmatic pairing. The sizes of the segments exchanged in wheat-rye recombinant chromosomes provide cytological evidence that wheat-rye recombination is restricted to the distal chromosomal regions. Received: 24 August 1995; in revised form: 27 February 1996 / Accepted: 28 March 1996  相似文献   

20.
Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号