首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dichlorofluorescein method has become a standard technique for measuring reactive oxygen species (ROS) formed in cells by ionizing radiation. A recent report (Korystov et al., Radiat. Res. 168, 226-232, 2007) has suggested that the method is subject to an artifact in that it erroneously reports hydrogen peroxides generated in the extracellular medium as ROS formed intracellularly by ionizing radiation. It was hypothesized that radiation-induced extracellular peroxides enter cells in the minutes after radiation exposure and subsequently oxidize the intracellular dichlorofluorescin probe and that dichlorofluorescein fluorescence is not due to ROS formed intracellularly by ionizing radiation. We tested this hypothesis by measuring the contribution of long-lived radicals formed in medium by ionizing radiation on intracellular dichlorofluorescein fluorescence. We found no evidence that this artifact contributes significantly to intracellular dichlorofluorescein fluorescence. These results and those of Korystov et al. are discussed in view of cellular dichlorofluorescin leakage and radiation chemistry. We conclude that the dichlorofluorescein method is effective for quantifying intracellular ROS induced by ionizing radiation.  相似文献   

2.
用放射免疫法测定了四膜虫在群体生长各阶段和在有性过程中cAMP的含量变化。在群体生长的延迟期(Lag phase)之末,即将进入对数期时,cAMP含量出现一个峰值。随着对数期的进展,cAMP含量陆续下降,在对数期之末,cAMP含量降至最低值。群体进入静止期后,细胞内cAMP含量略有回升。 在饥饿诱导接台的过程中,细胞内cAMP含量在开始饥饿的很短时间内即迅速降至一个最低点,并且在整个接合过程中一直保持较低的水平。接合抑制剂伴刀豆球蛋白A(CoaA)和精胺(spermine)等在抑制接合的同时,也阻止饥饿细胞cAMP含量的迅速下降,使之不能达到在正制情况下接合出现时所达到的低水平。 在饥俄细胞的培养液中检出了较高量的cAMP。这可能有助于说明何以饥饿细胞的cAMP含量能够在很短时间内迅速下降。至于排出的cAMP对四膜虫的接合有无促进或其他作用,有特继续研究。  相似文献   

3.
Shaw, Maxwell K. (University of California, Davis), and John L. Ingraham. Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature. J. Bacteriol. 90:141-146. 1965.-If Escherichia coli ML30 is shifted from 37 to 10 C during exponential growth in glucose minimal medium, a 4.5-hr lag results. During this lag, the proportion of unsaturated fatty acids increases in the cellular lipids. However, the adjustment of the fatty acid composition does not appear to be prerequisite to growth at 10 C. If shifts are made to 10 C into minimal medium containing glucose after starvation for glucose at 37 C for 0.5 and 16 hr, the lag periods at 10 C are 4.5 and 6 hr, respectively. Withholding glucose during the lag periods does not affect the duration of the lag periods, but no change in fatty acid composition occurs if glucose is not present. Supplementing the medium with glucose after the lag period permits immediate growth at 10 C; however, the fatty acid composition is still typical of cells grown at 37 C. It is concluded that the fatty acid composition of cells does not determine the minimal temperature of growth.  相似文献   

4.
The effects of six flavonoids viz., apigenin, genistein, morin, naringin, pelargonidin and quercetin on the susceptibility of low-density lipoprotein (LDL) to oxidative modification were investigated. Flavonoids were added to plasma and incubated for 3 hr at 37 degrees C, and the LDL fraction was separated by ultracentrifugation. Oxidizability of LDL was estimated by measuring conjugated diene (CD), lipid peroxides and thiobarbituric acid-reactive substances (TBARS), after cupric sulfate solution was added. Quercetin and morin significantly (P<0.01 by ANOVA) prolonged the lag time before initiation of oxidation reaction in dose-dependent manner. They also suppressed the formation of lipid peroxides and TBARS more markedly than other flavonoids. The ability to prolong lag time and suppression of lipid peroxides and TBARS formation was in the following order: quercetin >morin >pelargonidin >genistein >naringin >apigenin. LDL exposed to flavonoids reduced oxidizability. These findings suggest that flavonoids may have a role in ameliorating atherosclerosis.  相似文献   

5.
An increased lipid peroxides and a decreased production of prostacyclin have been shown in advanced atherosclerotic lesions and plasma. Our purpose was to determine whether the similar findings could be observed in cultured endothelial cells, and whether antioxidants could protect the cell against peroxide injury. In these experiments we have used bovine aortic endothelial cells in culture to address the issue of hyperlipidemia-induced arterial damage. Results of the present study showed that different concentration of hyperlipidemic sera from atherogenic rabbits induced a time- and dose-dependent alteration in the production of prostacyclin and levels of lipid peroxides in endothelial cells. Endothelial cells incubated with hyperlipidemic serum increased prostacyclin generation significantly during the initial stages and then continuously decreased. When endothelial cells were incubated for 36 h, TXA2 generation was also impaired and at the same time the cellular lipid peroxides content increased. There was a positive correlation between the concentration of hyperlipidemic serum and lipid peroxides and an inverse correlation with prostacyclin synthesis. The medium supplemented with antioxidant selenium or vitamin E showed a significant decrease in lipid peroxides and an increase in prostacyclin synthesis. These results suggest that both hyperlipidemic serum and lipid peroxides injury endothelial cells and inactivate prostacyclin synthetase, resulting in a decrease of prostacyclin production, while antioxidants have a protective effect. We conclude that the increase in lipid peroxides in association with hyperlipidemia results in alteration of prostacyclin synthesis that may play an important role in the pathogenesis of atherosclerosis.  相似文献   

6.
7.
S F Minney  A V Quirk 《Microbios》1985,42(167):37-44
The effect of 0, 5, 10 and 25 mg l-1 cadmium on the growth of Saccharomyces cerevisiae in defined medium has been investigated. It was found that the length of the lag phase increased with cadmium concentration and that metal uptake during the lag phase occurred only at a cadmium concentration of 25 mg l-1. However, metal uptake occurred at all cadmium concentrations during the exponential phase. The yeast was gradually adapted to cadmium by a series of subcultures which resulted in a decrease in the length of the lag phase. Adaptation also caused a reduction in the cadmium uptake during the lag phase at 25 mg l-1 cadmium but did not affect uptake during the exponential phase at any concentration. A single passage through cadmium-free medium partially reversed the adaptation process. Sulphide production was enhanced significantly when the yeast was grown in the presence of increasing cadmium concentrations. However, at 5 mg l-1 cadmium, adapted cells produced less sulphide than unadapted cells, whilst at 10 and 25 mg l-1 cadmium the production of sulphide was similar for adapted and unadapted cells.  相似文献   

8.
1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse.  相似文献   

9.
Proteins are major initial cell targets of hydroxyl free radicals   总被引:2,自引:0,他引:2  
The principal aim of the current study was to identify the initial cell targets of hydroxyl free radicals. Our recent report showed that proteins were oxidized before lipids in U937 cells exposed to peroxyl radicals. Extending this finding, we investigated whether a similar oxidation sequence occurs in other lines of cells, whether hydroxyl radicals can also initiate cell protein oxidation, and whether DNA fragmentation is an early event in radical-induced cell damage. Mouse myeloma Sp2/0-Ag14 and U937 cells were exposed to hydroxyl radicals generated in solution by gamma irradiation and the formation of protein peroxides measured by a ferric-xylenol orange assay. No lipid peroxidation or DNA damage was evident by the time of significant formation of protein peroxides. DNA fragmentation was detectable after prolonged incubation at 37 degrees C and was characteristic of enzymatic action rather than of random scission by the radicals. Yields of protein hydroperoxides in the irradiated cells were independent of composition of the medium, suggesting that only the radicals produced within the cells or immediately near the cell surface were effective in oxidizing the cell proteins. The results are consistent with the hypothesis that proteins are major initial targets of free radicals in cells and suggest that treatments leading to the prevention of protein oxidation or to harmless reduction of protein peroxides is likely to result in alleviation of radical-induced biological damage.  相似文献   

10.
Summary An intercept in the linear relationship between the biomass increase and decrease in medium conductivity was found in suspension cultures of rice cells. It was due to the. consumption of medium salts by the cells during the lag phase. An equation was established for accurate monitoring of the cell growth which aids understanding of the cell physiology especially during the initial stage of cell growth.  相似文献   

11.
It is known that large amounts of leukocytes colonize the uterus, and that these leukocytes can produce considerable quantities of hydrogen peroxide (H2O2) and other reactive oxygen species that are toxic to sperm. It has been shown recently that oviductal fluid has a catalase that helps to maintain sperm motility. Therefore, the current experiment was performed to determine if a similar mechanism of protection exists against peroxides within uterine cells. Sperm motility and velocity were recorded after a 6h incubation in 1) conditioned media in the presence of endometrial cells, 2) conditioned media without endometrial cells, 3) control media (48h without cells) over endometrial cells, or 4) control media alone. All these treatments were performed in the presence or absence of added catalase. Conditioned media, endometrial cells and catalase had a significant positive effect on the maintenance of sperm motility and velocity. Addition of anti-catalase antibodies did not neutralize the beneficial effect of the conditioned media. However, the concentrations of aromatic amino acids, known substrates for sperm amino acid oxidase, were significantly lower in uterine conditioned media as compared to control medium. This reduction of aromatic amino acids was in correlation with reduced H2O2 production by sperm as estimated by chemiluminescence. These results suggest that epithelial and stromal uterine cells do not maintain sperm motility by secreting catalase in the conditioned media, but rather by reducing the levels of aromatic amino acids and thus of peroxides generated in the presence of spermatozoa.  相似文献   

12.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds on the susceptibility of low-density lipoprotein (LDL) to oxidative modification. In this study, six flavonoids, "apigenin, genistein, morin, naringin, pelargonidin and quercetin", were added to plasma and incubated for 3h at 37 degrees C. Then, the LDL fraction was separated by ultracentrifugation. The oxidizability of LDL was estimated by measuring conjugated diene (CD), lipid peroxides and thiobarbituric acid-reactive substances (TBARS) after cupric sulfate solution was added. We showed that among flavonoids used, quercetin and morin significantly (P<0.01 by ANOVA) and dose-dependently prolonged the lag time before initiation of oxidation reaction. Also, these two flavonoids suppressed the formation of lipid peroxides and TBARS more markedly than others. Their ability to prolong lag time and suppression of lipid peroxides and TBARS formation resulted to be in the following order: quercetin>morin>pelargonidin>genistein>naringin>apigenin. LDL exposed to flavonoids in vitro reduced oxidizability. These findings show that flavonoids may have a role in ameliorating atherosclerosis.  相似文献   

13.
It has been reported that Escherichia coli is able to grow in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) when ATP is produced by glycolysis (N. Kinoshita et al., J. Bacteriol. 160:1074-1077, 1984). We investigated the effect of CCCP on the osmotic adaptation of E. coli growing with glucose. When E. coli growing in rich medium containing CCCP was transferred to medium containing sucrose, its growth stopped for a while and then started again. This lag time was negligible in the absence of CCCP. The same results were obtained when the osmolarity was increased by N-methylglucamine-maleic acid. In addition to adapting itself to the hyperosmotic rich medium, E. coli adapted itself to hyperosmolarity in a minimal medium containing CCCP, again with a lag time. Hyperosmotic shock decreased the internal level of potassium ion rather than causing the accumulation of external potassium ion in the presence of CCCP. The internal amount of glutamic acid increased in cells growing in hyperosmotic medium in the presence and absence of CCCP. Large elevations in levels of other amino acids were not observed in the cells adapted to hyperosmolarity. Trehalose was detected only in hyperosmosis-stressed cells in the presence and absence of CCCP. These results suggest that E. coli can adapt to changes in the environmental osmolarity with a negligible accumulation of osmolytes from the external milieu but that the accumulation may promote the adaptation.  相似文献   

14.
The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock. (c) 1997 John Wiley & Sons, Inc.  相似文献   

15.
Reaction of certain amino acids, peptides, and proteins with singlet oxygen yields substrate-derived peroxides. Recent studies have shown that these species are formed within intact cells and can inactivate key cellular enzymes. This study examines potential mechanisms by which cells might remove or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron. Glutathione peroxidase, in the presence of reduced glutathione (GSH) rapidly removes peptide, but not protein, peroxides, consistent with substrate size being a key factor. Protein thiols, GSH, other low-molecular-weight thiols, and the seleno-compound ebselen react, in a nonstoichiometric manner, with both peptide and protein peroxides. Cell lysate studies show that thiol consumption and peroxide removal occur in parallel; the stoichiometry of these reactions suggests that thiol groups are the major direct, or indirect, reductants for these species. Ascorbic acid and some derivatives can remove both the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to remove these materials; the slow removal of these species is consistent with protein peroxides playing a role in cellular dysfunction resulting from oxidative stress.  相似文献   

16.
It has been shown previously that apoptosis of tobacco cells induced by cadmium ions shows a relatively long lag period between exposure and cell death. This lag phase lasts for 3 d in TBY-2 cell cultures and is characterized by the maintenance of full cell viability despite extensive fragmentation of DNA into pieces of chromatin loop size. Experiments reported here demonstrate that cell death can be prevented if 50 micro M CdSO(4) is removed from the growth medium during the lag phase, suggesting that an irreversible apoptotic trigger is delivered within 24 h, between the third and fourth days of cadmium treatment. The post-cadmium recovery phase was characterized by DNA repair at the level of 50-200 kb and increased telomerase activity. Analysis of high-molecular-weight DNA by pulsed-field-gel electrophoresis revealed that the majority of DNA strand breaks was repaired within 48 h after cadmium withdrawal. Telomerase activity increased 2.5-fold in the recovery phase, but elevated levels were also found in cell extracts from apoptotic cells suggesting that telomerase might be associated with DNA repair, but it is not capable of inhibiting ongoing apoptosis. Limited exposure of TBY-2 cells to cadmium elicits non-random DNA damage of relatively high magnitude that can be repaired. It is proposed that plants might have developed a highly efficient DNA repair system to cope with transient genotoxic stress.  相似文献   

17.
Two haploid strains of Saccharomyces cerevisiae viz. MATalpha and MATa were grown in glucose and trehalose medium and growth patterns were compared. Both strains show similar growth, except for an extended lag phase in trehalose grown cells. In both trehalose grown strains increase in activities of both extracellular trehalase activities and simultaneous decrease in extracellular trehalose level was seen. This coincided with a sharp increase in extracellular glucose level and beginning of log phase of growth. Alcohol production was also observed. Secreted trehalase activity was detected, in addition to periplasmic activity. It appeared that extracellular trehalose was hydrolyzed into glucose by extracellular trehalase activity. This glucose was utilized by the cells for growth. The alcohol formation was due to the fermentation of glucose. Addition of extracellular trehalase caused reduction in the lag phase when grown in trehalose medium, supporting our hypothesis of extracellular utilization of trehalose.  相似文献   

18.
The lag phase of the bacterial growth curve is an important determinant in speeding the detection of pathogens. It is affected by many factors including the prevailing growth environment and inoculum size, as well as specific signal molecules. The elucidation of growth-regulating signal molecules is further facilitated by culturing cells in defined growth media. In this study, a defined medium capable of supporting growth of Listeria innocua at similar levels as obtained using a complex brain heart infusion (BHI) media was developed. Further, the effects of conditioned medium (CM) on population lag time of L. innocua was investigated using a rapid parallel approach (with an automated microtiter plate reader). Importantly, the lag phase was shortened by up to approximately 50% by the addition of CM from L. innocua cultures obtained late in the exponential phase. Finally, while L. innocua were found to secrete bacterial signaling autoinducer, AI-2, tests using Escherichia coli based CM having a 90-fold difference in AI-2 level suggested that the observed decrease in lag phase was not due to E. coli-derived AI-2 and was instead due to elements specific to L. innocua. These findings indicate secreted signal molecules may be found in CM that speed detection of L. innocua.  相似文献   

19.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

20.
The addition of the pore forming colicin A to Escherichia coli cells results in an efflux of cytoplasmic potassium. This efflux is preceded by a lag time which is related to the time needed for the translocation of the toxin through the envelope. Denaturing the colicin A with urea, before adding it to the cells, did not affect the properties of the pore but decreased the lag time. After renaturation, the lag time was similar to that of the native colicin. This suggests that the unfolding of colicin A accelerates its translocation. The addition of trypsin, which has access neither to the periplasmic space nor to the cytoplasmic membrane, resulted in an immediate arrest of the potassium efflux induced by colicins A and B. The possibility that trypsin may act on a bacterial component required for colicin reception and/or translocation was ruled out. It is thus likely that the arrest of the efflux corresponds to a closing of the pores. This long distance effect of trypsin suggests that part of the polypeptide chain of the colicins may still be in contact with the external medium even when the pore has formed in the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号