首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interferon regulatory factors (IRFs) are involved in gene regulation in many biological processes including the antiviral, growth regulatory, and immune modulatory functions of the interferon system. Several studies have demonstrated that IRF-3, IRF-5, and IRF-7 specifically contribute to the innate antiviral response to virus infection. It has been reported that virus-specific phosphorylation leads to IRF-5 nuclear localization and up-regulation of interferon, cytokine, and chemokine gene expression. Two nuclear localization signals have been identified in IRF-5, both of which are sufficient for nuclear translocation and retention in virus-infected cells. In the present study, we demonstrate that a CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization. IRF-5 possesses a functional nuclear export signal (NES) that controls dynamic shuttling between the cytoplasm and the nucleus. The NES element is dominant in unstimulated cells and results in the predominant cytoplasmic localization of IRF-5. Mutation of two leucine residues in the NES motif to alanine, or three adjacent Ser/Thr residues to the phosphomimetic Asp, results in constitutively nuclear IRF-5 and suggests that phosphorylation of adjacent Ser/Thr residues may contribute to IRF-5 nuclear accumulation in virus-induced cells. IKK-related kinases TBK1 and IKKepsilon have been shown to phosphorylate and activate IRF-3 and IRF-7, leading to the production of type 1 interferons and the development of a cellular antiviral state. We examined the phosphorylation and activation of IRF-5 by TBK1 and IKKepsilon kinases. Although IRF-5 is phosphorylated by IKKepsilon and TBK1 in co-transfected cells, the phosphorylation of IRF-5 did not lead to IRF-5 nuclear localization or activation.  相似文献   

3.
4.
5.
6.
7.
The anti-viral type I interferon (IFN) response is initiated by the immediate induction of IFN beta, which is mainly controlled by the IFN-regulatory factor-3 (IRF-3). The signaling pathways mediating viral IRF-3 activation are only poorly defined. We show that the Rho GTPase Rac1 is activated upon virus infection and controls IRF-3 phosphorylation and activity. Inhibition of Rac1 leads to reduced IFN beta promoter activity and to enhanced virus production. As a downstream mediator of Rac signaling towards IRF-3, we have identified the kinase p21-activated kinase (PAK1). Furthermore, both Rac1 and PAK1 regulate the recently described IRF-3 activators, I kappa B kinase- and TANK-binding kinase-1, establishing a first canonical virus-induced IRF-3 activating pathway.  相似文献   

8.
9.
10.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

11.
IKK-i and TBK1 were recently identified as IKK-related kinases that are activated by toll-like receptors TLR3 and TLR4. These kinases were identified as essential components of the virus-activated as well as LPS-MyD88 independent kinase complex that phosphorylates IRF3 and results in the production of cytokines involved in innate immunity. Both IKK-i and TBK1 have also been implicated in the activation of the NFkappaB pathway but the precise mechanism is not clear. Although the literature to date suggests that IKK-i and TBK1 play redundant roles in TLR3 and TLR4 signaling, recent data suggest that there may be subtle differences in the signaling pathways affected by these kinases. We have generated tetracycline-inducible stable cell lines that express a wild type or kinase-inactive mutant form of IKK-i. Our data suggest that expression of IKK-i can activate both NFkappaB and IRF3, leading to the production of several cytokines including interferon beta. IKK-i most likely acts upstream of IKK2 to activate NFkappaB in these cells since expression of the kinase-inactive version of IKK-i did not inhibit TNFalpha mediated production of inflammatory cytokines. The data suggest that IKK-i is not involved in TNF-alpha mediated signaling but instead could likely play a role in activating IKK2 downstream of Toll-like receptor signaling. We also identified STAT1, Tyk2, and JAK1 as secondary mediators of IKK-i signaling as a result of interferon beta production in these cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
We have identified a cytomegalovirus virion protein capable of modulating the rapid induction of an interferon-like response in cells that follows virus binding and penetration. Functional genomics revealed a role for the major cytomegalovirus structural protein, pp65 (ppUL83), in counteracting this response. The underlying mechanism involves a differential impact of this structural protein on the regulation of interferon response factor 3 (IRF-3). In contrast, NF-kappaB is activated independent of pp65, and neither STAT1 nor STAT3 becomes activated by either virus. pp65 is sufficient to prevent the activation of IRF-3 when introduced alone into cells. pp65 acts by inhibiting nuclear accumulation of IRF-3 and is associated with a reduced IRF-3 phosphorylation state. Thus, this investigation shows that the major structural protein of cytomegalovirus is committed to the modulation of the IRF-3 response, a primary mediator of the type I interferon response. By subverting IRF-3, the virus escapes throwing a central alarm devoted to both immediate antiviral control and regulation of the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号