首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the "fluorescence recovery after photobleaching" (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions.  相似文献   

2.
Young JC  Hartl FU 《The EMBO journal》2000,19(21):5930-5940
The molecular chaperone Hsp90 binds and hydrolyses ATP, but how this ATPase activity regulates the interaction of Hsp90 with a polypeptide substrate is not yet understood. Using the glucocorticoid receptor ligand binding domain as a substrate, we show that dissociation of Hsp90 from bound polypeptide depends on the Hsp90 ATPase and is blocked by geldanamycin, a specific ATPase inhibitor. The co-chaperone p23 greatly stimulates Hsp90 substrate release with ATP, but not with the non-hydrolysable nucleotides ATPgammaS or AMP-PNP. Point mutants of Hsp90 with progressively lower ATPase rates are progressively slower in ATP-dependent substrate release but are still regulated by p23. In contrast, ATPase-inactive Hsp90 mutants release substrate poorly and show no p23 effect. These results outline an ATP-driven cycle of substrate binding and release for Hsp90 which differs from that of other ATP-driven chaperones. Conversion of the ATP state of Hsp90 to the ADP state through hydrolysis is required for efficient release of substrate polypeptide. p23 couples the ATPase activity to polypeptide dissociation and thus can function as a substrate release factor for Hsp90.  相似文献   

3.
The action of the molecular chaperone Hsp90 is essential for the activation and assembly of an increasing number of client proteins. This function of Hsp90 has been proposed to be governed by conformational changes driven by ATP binding and hydrolysis. Association of co-chaperones and client proteins regulate the ATPase activity of Hsp90. Here, we have examined the inhibition of the ATPase activity of human Hsp90beta by one such co-chaperone, human p23. We demonstrate that human p23 interacts with Hsp90 in both the absence and presence of nucleotide with a higher affinity in the presence of the ATP analogue AMP-PNP. This is consistent with an analysis of the effect of p23 on the steady-state kinetics that revealed a mixed mechanism of inhibition. Mass spectrometry of the intact Hsp90.p23 complex determined the stoichiometry of binding to be one p23 to each subunit of the Hsp90 dimer. p23 was also shown to interact with a monomeric, truncated fragment of Hsp90, lacking the C-terminal homodimerisation domain, indicating dimerisation of Hsp90 is not a prerequisite for association with p23. Complex formation between Hsp90 and p23 increased the apparent affinity of Hsp90 for AMP-PNP and completely inhibited the ATPase activity. We propose a model where the role of p23 is to lock individual subunits of Hsp90 in an ATP-dependent conformational state that has a high affinity for client proteins.  相似文献   

4.
The molecular chaperone Hsp90 assists a subset of cellular proteins and is essential in eukaryotes. A cohort of cochaperones contributes to and regulates the multicomponent Hsp90 machine. Unlike the biochemical activities of the cochaperone p23, its in vivo functions and the structure-function relationship remain poorly understood, even in the genetically tractable model organism Saccharomyces cerevisiae. The SBA1 gene that encodes the p23 ortholog in this species is not an essential gene. We found that in the absence of p23/Sba1p, yeast and mammalian cells are hypersensitive to Hsp90 inhibitors. This protective function of Sba1p depends on its abilities to bind Hsp90 and to block the Hsp90 ATPase and inhibitor binding. In contrast, the protective function of Sba1p does not require the Hsp90-independent molecular chaperone activity of Sba1p. The structure-function analysis suggests that Sba1p undergoes considerable structural rearrangements upon binding Hsp90 and that the large size of the p23/Sba1p-Hsp90 interaction surface facilitates maintenance of high affinity despite sequence divergence during evolution. The large interface may also contribute to preserving a protective function in an environment in which Hsp90 inhibitory compounds can be produced by various microorganisms.  相似文献   

5.
6.
With some exceptions, research so far has shown heat shock protein (Hsp) 90 to be a cytoplasmic protein. Here, we studied the sequence determinants which dictate the subcellular localization of Hsp90. By constructing hybrid molecules between a nuclear protein, progesterone receptor (PR), and parts of Hsp90, we demonstrated that the C-terminal but not the N-terminal half of Hsp90 can prevent nuclear translocation of the PR. Studies with an antibody raised against a region which contains the major nuclear localization signal (NLS) of the PR suggest that the inhibition of nuclear localization is not due to steric hindrance of the NLS of the PR by Hsp90 sequences in hybrid molecules. In order to characterize further the cytoplasmic anchoring of Hsp90 we constructed four chimeric molecules between the C-terminal half of Hsp90 and estrogen receptor (ER) with different numbers of nuclear localization protosignals (proto-NLS). When the C-terminal half of Hsp90 was fused with ER containing no or one proto-NLS, the hybrid molecule was located exclusively in the cytoplasm. When the nuclear translocation signal was strengthened by adding two or three protosignals, the hybrid molecule was exclusively nuclear. These results suggest that the C-terminal half of Hsp90 contains a sequence which is responsible for the cytoplasmic localization of the protein. Further deletions of the molecule suggested that the cytoplasmic anchoring signal is located between amino acids 333 and 664.  相似文献   

7.
The functions of molecular chaperones have been extensively investigated biochemically in vitro and genetically in bacteria and yeast. We have embarked on a functional genomic analysis of the Hsp90 chaperone machine in the mouse by disrupting the p23 gene using a gene trap approach. p23 is an Hsp90 cochaperone that is thought to stabilize Hsp90-substrate complexes and, independently, to act as the cytosolic prostaglandin E2 synthase. Gene deletions in budding and fission yeasts and knock-down experiments with the worm have not revealed any clear in vivo requirements for p23. We find that p23 is not essential for overall prenatal development and morphogenesis of the mouse, which parallels the observation that it is dispensable for proliferation in yeast. In contrast, p23 is absolutely necessary for perinatal survival. Apart from an incompletely formed skin barrier, the lungs of p23 null embryos display underdeveloped airspaces and substantially reduced expression of surfactant genes. Correlating with the known function of glucocorticoids in promoting lung maturation and the role of p23 in the assembly of a hormone-responsive glucocorticoid receptor-Hsp90 complex, p23 null fibroblast cells have a defective glucocorticoid response. Thus, p23 contributes a nonredundant, temporally restricted, and tissue-specific function during mouse development.  相似文献   

8.
9.
CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a beta-barrel and a flexible C-terminal domain with a short alpha-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence (131)DENYTPP(137) was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE.  相似文献   

10.
The Hsp90 co-chaperone Cdc37 provides an essential function for the biogenesis and support of numerous protein kinases. In this report, we demonstrate that mammalian Cdc37 is phosphorylated on Ser13 in situ in rabbit reticulocyte lysate and in cultured K562 cells and that casein kinase II is capable of quantitatively phosphorylating recombinant Cdc37 at this site. Mutation of Ser13 to either Ala or Glu compromises the recruitment of Cdc37 to Hsp90-kinase complexes but has only modest effects on its basal (client-free) binding to Hsp90. Furthermore, Cdc37 containing the complementing Ser to Glu mutation showed altered interactions with Hsp90-kinase complexes consistent with compromised Cdc37 modulation of the Hsp90 ATP-driven reaction cycle. Thus, the data indicate that phosphorylation of Cdc37 on Ser13 is critical for its ability to coordinate Hsp90 nucleotide-mediated conformational switching and kinase binding.  相似文献   

11.
Heat-shock protein 90 (Hsp90) chaperones a key subset of signaling proteins and is necessary for malignant transformation. Hsp90 is subject to an array of posttranslational modifications that affect its function, including acetylation. Histone deacetylase (HDAC) inhibitors and knockdown of HDAC6 induce Hsp90 acetylation and inhibit its activity. However, direct determination of the functional consequences of Hsp90 acetylation has awaited mapping of specific sites. We now demonstrate that Hsp90 K294 is acetylated. Mutational analysis of K294 shows that its acetylation status is a strong determinant of client protein and cochaperone binding. In yeast, Hsp90 mutants that cannot be acetylated at K294 have reduced viability and chaperone function compared to WT or to mutants that mimic constitutive acetylation. These data suggest that acetylation/deacetylation of K294 plays an important role in regulating the Hsp90 chaperone cycle.  相似文献   

12.
Hsp90 is able to bind partially unfolded firefly luciferase and maintain it in a refoldable state; the subsequent successive action of the 20S proteasome activator PA28, Hsc70 and Hsp40 enables its refolding. Hsp90 possesses two chaperone sites in the N- and C-terminal domains that prevent the aggregation of denatured proteins. Here we show that both chaperone sites of Hsp90 are effective not only in capturing thermally denatured luciferase, but also in holding it in a state prerequisite for the successful refolding process mediated by PA28, Hsc70 and Hsp40. In contrast, the heat-induced activity of Hsp90 to bind chemically denature dihydrofolate reductase efficiently and prevent its rapid spontaneous refolding was detected in the N-terminal site of Hsp90 only, while the C-terminal site was without effect. Thus it is most likely that both the N- and C-terminal chaperone sites may contribute to Hsp90 function as holder chaperones, however, in a significantly distinct manner.  相似文献   

13.
The molecular chaperone Hsp90 is essential for the correct folding, maturation and activation of a diverse array of client proteins, including several key constituents of oncogenic processes. Hsp90 has become a focus of cancer research, since it represents a target for direct prophylaxis against multistep malignancy. Hydrogen-exchange mass spectrometry was used to study the structural and conformational changes undergone by full-length human Hsp90beta in solution upon binding of the kinase-specific co-chaperone Cdc37 and two Hsp90 ATPase inhibitors: Radicicol and the first-generation anticancer drug DMAG. Changes in hydrogen exchange pattern in the complexes in regions of Hsp90 remote to the ligand-binding site were observed indicating long-range effects. In particular, the interface between the N-terminal domain and middle domains exhibited significant differences between the apo and complexed forms. For the inhibitors, differences in the interface between the middle domain and the C-terminal domain were also observed. These data provide important insight into the structure of the biologically active form of the protein.  相似文献   

14.
15.
The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.  相似文献   

16.
Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine   总被引:2,自引:0,他引:2  
  相似文献   

17.
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90.Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure.Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, ‘open’ state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.  相似文献   

18.
Dynamic interdomain interactions within the Hsp70 protein is the basis for the allosteric and functional properties of Hsp70s. While Hsp70s are generally conserved in terms of structure, allosteric behavior, and some overlapping functions, Hsp70s also contain variable sequence regions which are related to distinct functions. In the Hsp70 sequence, the part with the greatest sequence variation is the C-terminal α-helical lid subdomain of substrate-binding domain (SBDα) together with the intrinsically disordered region. Dynamic interactions between the SBDα and β-sandwich substrate-binding subdomain (SBDβ) contribute to the chaperone functions of Hsp70s by tuning kinetics of substrate binding. To investigate how the C-terminal region of Hsp70 has evolved from prokaryotic to eukaryotic organisms, we tested whether this region can be exchanged among different Hsp70 members to support basic chaperone functions. We found that this region from eukaryotic Hsp70 members cannot substitute for the same region in Escherichia coli DnaK to facilitate normal chaperone activity of DnaK. In contrast, this region from E. coli DnaK and Saccharomyces cerevisiae Hsp70 (Ssa1 and Ssa4) can partially support some roles of human stress inducible Hsp70 (hHsp70) and human cognate Hsp70 (hHsc70). Our results indicate that the C-terminal region from eukaryotic Hsp70 members cannot properly support SBDα–SBDβ interactions in DnaK, but this region from DnaK/Ssa1/Ssa4 can still form some SBDα–SBDβ interactions in hHsp70 or hHsc70, which suggests that the mode for SBDα–SBDβ interactions is different in prokaryotic and eukaryotic Hsp70 members. This study provides new insight in the divergency among different Hsp70 homologs and the evolution of Hsp70s.  相似文献   

19.
Hsp90 is an abundant molecular chaperone that functions in an ATP-dependent manner in vivo. The ATP-binding site is located in the N-terminal domain of Hsp90. Here, we dissect the ATPase cycle of Hsp90 kinetically. We find that Hsp90 binds ATP with a two-step mechanism. The rate-limiting step of the ATPase cycle is the hydrolysis of ATP. Importantly, ATP becomes trapped and committed to hydrolyze during the cycle. In the isolated ATP-binding domain of Hsp90, however, the bound ATP was not committed and the turnover numbers were markedly reduced. Analysis of a series of truncation mutants of Hsp90 showed that C-terminal regions far apart in sequence from the ATP-binding domain are essential for trapping the bound ATP and for maximum hydrolysis rates. Our results suggest that ATP binding and hydrolysis drive conformational changes that involve the entire molecule and lead to repositioning of the N and C-terminal domains of Hsp90.  相似文献   

20.
Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37   总被引:7,自引:0,他引:7  
In vivo activation of client proteins by Hsp90 depends on its ATPase-coupled conformational cycle and on interaction with a variety of co-chaperone proteins. For some client proteins the co-chaperone Sti1/Hop/p60 acts as a "scaffold," recruiting Hsp70 and the bound client to Hsp90 early in the cycle and suppressing ATP turnover by Hsp90 during the loading phase. Recruitment of protein kinase clients to the Hsp90 complex appears to involve a specialized co-chaperone, Cdc37p/p50(cdc37), whose binding to Hsp90 is mutually exclusive of Sti1/Hop/p60. We now show that Cdc37p/p50(cdc37), like Sti1/Hop/p60, also suppresses ATP turnover by Hsp90 supporting the idea that client protein loading to Hsp90 requires a "relaxed" ADP-bound conformation. Like Sti1/Hop/p60, Cdc37p/p50(cdc37) binds to Hsp90 as a dimer, and the suppressed ATPase activity of Hsp90 is restored when Cdc37p/p50(cdc37) is displaced by the immunophilin co-chaperone Cpr6/Cyp40. However, unlike Sti1/Hop/p60, which can displace geldanamycin upon binding to Hsp90, Cdc37p/p50(cdc37) forms a stable complex with geldanamycin-bound Hsp90 and may be sequestered in geldanamycin-inhibited Hsp90 complexes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号