首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

2.
Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.  相似文献   

3.
4.
5.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

6.
Amplification of the gene encoding 23S rRNA of Plesiomonas shigelloides by polymerase chain reaction (PCR), with primers complementary to conserved regions of 16S and the 3' end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria. The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in a further two clones. In one the sequence of a single tRNA(Glu) was found which was absent from the other two. This variation in sequence suggests that the different clones may be derived from different ribosomal RNA operons.  相似文献   

7.
PCR amplification of the spacer region between the 16S and 23S rRNA genes is commonly employed for the analysis of bacterial communities. In this analysis, the intergenic spacers are amplified by PCR using primers complementary to conserved regions in the 3' 16S rDNA and 5' 23S rDNA. By this method, the observation of every bacterial population may be limited by several causes. To explore the extent of bacterial populations overlooked by this method, we have used an empirical approach. In a sample containing about 50 colonies, we tested the capability to amplify by PCR the spacers from each colony. We also examined the ability to observe the spacers from each colony in the product obtained after amplification of the DNA extracted from the whole sample, as it is usually performed by this method. Contrarily to our expectations that a significant fraction of colonies would not yield amplification products, spacers were successfully amplified from every colony of two different samples examined. Overall, our results suggest that in spite of well-based theoretical limitations, the analysis of bacterial communities by amplification of the spacer regions can render a comprehensive representation of the more abundant bacterial clades in the sample.  相似文献   

8.
测定基因5′端位置是研究基因转录调控的一个重要前提。本文将蓖麻蚕18S rRNA基因DNA的5′端用~(32)P标记,然后与18S rRNA杂交,再用S1核酸酶水解掉非杂交区的DNA和RNA。分析放射自显影的结果,测出18S rRNA基因5′端的位置。在18S rRNA基因的BglⅡ_2位点向EcoRⅠ,方向延伸约220bp处,从这一结果,可知道蓖麻蚕rRNA基因的转录方向是5′EcoRⅠ_2→BglⅡ_23′。  相似文献   

9.
10.
The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA.  相似文献   

11.
12.
13.
本文测定了蓖麻蚕18S rRNA基因(rDNA) 3′末端及其外侧的DNA顺序。将这一顺序与家蚕、果蝇、大鼠 18S rDNA 3′末端顺序以及大肠杆菌16 S rDNA 3′末端顺序作了比较,发现它们间有惊人的同源性。不仅如此,这些基因的3′末端所形成的茎环结构也十分相似,在3′末端还有保守的EcoRI切点。这些研究结果对了解18S rRNA 3′末端在蛋白质合成中的功能及在rRNA前体加工成熟中的作用;对于了解rRNA基因的进化打下了基础。  相似文献   

14.
15.
16.
S1 mapping showed that at least a significant portion of the 5S rRNA and tRNA(Arg)(ACG) is co-transcribed in canola chloroplast, making trnR the last gene transcribed in an operon of which the final sequence is 5'-16S-tRNA(Ile)-tRNA(Ala)-23S-4.5S-5S-tRNA(Arg)-3'. Various RNA termini representing RNA processing sites at several parts of the 5S rRNA-tRNA(Arg) area were detected. This gene spacer is substantially conserved among various species compared here, and a secondary structure model for this chloroplast region in canola applies to other plant sequences. The conservation of this intergenic sequence suggests a functional role, possibly by providing recognition structures for endogenous RNases involved in its maturing process.  相似文献   

17.
18.
19.
20.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号