首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

2.
3.
4.
5.
Mitogenic effects of agents activating either the protein kinase C (PDGF; phorbol esters) or the insulin-like growth factor 1 (IGF1)-receptor pathway were studied in quiescent chemically transformed mouse fibroblasts (BP-A31), by evaluating the rate of [3H]thymidine incorporation. Each of these pathways alone was found to be sufficient to sustain progression through the entire cell division cycle. The mitogenic activity of phorbol 12-myristate 13-acetate (PMA) but not that of insulin was blocked by staurosporine (an inhibitor of protein kinase C), in support of the notion that protein kinase C activation was required for the PMA-induced cell cycle progression. The mitogenic effects of PMA were potentiated by cycloheximide pretreatment, and they were abolished by 3-isobutyl-1-methyl xanthine (IBMX; a cyclic nucleotide phosphodiesterase inhibitor). PDGF (known to activate the phospholipase C-protein kinase C pathway) also displayed mitogenic activity in the cycloheximide-pretreated BP-A31 cells, and its effects were prevented by IBMX. In contrast, the mitogenic effects of insulin (at concentrations where it activates the IGF1 receptor) or of IGF1 neither were notably influenced by cycloheximide pretreatment nor were inhibited by IBMX (in the presence of IBMX, the onset of S-phase was delayed by several hours). The expression of the c-fos gene was absent at quiescence; its induction by growth factors was not proportional to their mitogenic potency. Thus, c-fos expression was strongly induced by PMA but only weakly by insulin. IBMX was a powerful inducer of c-fos gene expression but caused a decrease in the level of c-myc mRNA.  相似文献   

6.
We investigated the molecular mechanisms underlying the ability of heparin to inhibit vascular smooth muscle cell (VSMC) growth. Previous experiments have shown that heparin inhibits induction of c-fos and c-myc protooncogene mRNA in rat VSMC stimulated by phorbol 12-myristate 13-acetate (PMA) but not when stimulated by epidermal growth factor (EGF) (Pukac, L. A., Castellot, J. J., Wright, T. C., Caleb, B. L., and Karnovsky, M. J. (1990) Cell Regul. 1, 435-443). The present experiments show that these mitogens activate distinct second messenger pathways in VSMC, because PMA but not EGF induction of c-fos and c-myc mRNA was suppressed in protein kinase C (PKC) down-regulated VSMC; this suggests that EGF does not act through a PKC-dependent pathway for induction of these genes. Heparin inhibited serum stimulation of c-fos mRNA in control VSMC, but heparin did not inhibit the smaller but significant serum stimulation of c-fos mRNA in PKC down-regulated VSMC, indicating that heparin may selectively inhibit PKC-dependent, but not PKC-independent, stimulation of gene expression. To further determine if heparin inhibits non-PKC pathways, VSMC were treated with dibutyryl cAMP, 3-isobutyl-1-methyl-xanthine, and Ca2+ ionophore A23187; stimulation of c-fos mRNA by this treatment was not inhibited by heparin. DNA synthesis and cell proliferation were inhibited in rat VSMC exposed briefly to heparin during the G0/G1 phase of the cell cycle. These experiments indicate heparin can act early in the cell cycle and suggest PKC-dependent but not PKC-independent signaling pathways for gene expression are selectively sensitive to heparin inhibition.  相似文献   

7.
8.
We have investigated the effects of transforming growth factor alpha (TGF alpha) in C3H10T1/2 cells, on S phase entry and early gene activation events associated with cell cycle progression. We find that EGF and TGF alpha, which both utilize the EGF receptor for signal generation, are able to stimulate DNA synthesis in these cells with nearly superimposable kinetics; however, the stimulation by TGF alpha was slightly greater at nearly all time points assayed. This report is the first showing that TGF alpha, like EGF, vigorously induces c-myc and c-fos gene expression in these cells. A significant stimulation of c-myc and c-fos mRNA levels is observed with both TGF alpha and EGF; c-myc mRNA levels show an 8-fold induction with both mitogens, while c-fos inductions were on the order of 12 to 14-fold at maximum. However, the induction of c-myc mRNA by TGF alpha has slower kinetics than by EGF.  相似文献   

9.
The cloned murine cytotoxic T cell line CT6 solely requires interleukin 2 (IL 2) for viability and cell cycle progression. Treatment of G arrested cultures of CT6 cells with recombinant IL 2 induces the rapid sequential expression of the nuclear proto-oncogenes c-fos, c-myc, and c-myb but does not affect the expression of several cytosolic or membrane-associated proto-oncogenes. A comparison of early genes induced by growth factor treatment of quiescent NIH/3T3 fibroblasts and CT6 cells demonstrated that only c-fos and c-myc induction is shared in the two different lineages. Factor-independent lines derived from CT6 cells show no mitogenic response to IL 2, yet binding of IL 2 with its receptor in the cells was capable of inducing the expression of c-fos and c-myc. In factor-independent cell lines, c-myc was uniformly expressed at high constitutive levels, suggesting that c-myc abrogates growth factor requirements of these cells. The levels of c-myc expression in the factor-independent lines was not due to an autocrine production of IL 2 but may be a consequence of constitutively activated IL 2 receptors.  相似文献   

10.
Insulin has recently been reported to function as a complete mitogen for SV40 large T antigen-transformed 3T3 T-cells, designated CSV3-1, but not for nontransformed 3T3 T-cells (H. Wang and R. E. Scott, J. Cell. Physiol., 147: 102-110, 1991). It is now reported that sodium orthovanadate mimics this effect of insulin. For example, when exposed to 1-5 microM vanadate, most predifferentiation growth-arrested CSV3-1 cells undergo DNA synthesis within 24 h, but neither vanadate nor insulin induces mitogenesis in nontransformed 3T3 T-cells. To investigate the possible mechanisms by which mitogenesis is induced in CSV3-1 cells, the effects of insulin and vanadate on the expression of growth-related genes were examined. Whereas insulin and vanadate had no effect on the expression of c-fos, c-myc, c-jun, jun-B, or ornithine decarboxylase activity in nontransformed 3T3 T-cells, insulin and vanadate showed different effects on the expression of these genes in CSV3-1 cells. Insulin induced a rapid and transient accumulation of c-fos mRNA followed by induction of c-myc, c-jun, jun-B, and ornithine decarboxylase. In contrast, vanadate induced the expression of c-jun, jun-B, and ornithine decarboxylase without inducing c-fos and c-myc. These observations suggest that SV40 large T antigen may play an important role in insulin- and vanadate-induced mitogenesis and that insulin and vanadate may mediate their mitogenic effects by different signal transduction pathways.  相似文献   

11.
12.
We have investigated the effect of 8-Br-cyclic adenosine 3':5' monophosphate (cAMP), a pharmacological activator of cAMP-dependent protein kinase, on the proliferation and the nuclear proto-oncogene induction in a murine granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent myeloid cell line. Cells were growth arrested by granulocyte macrophage colony-stimulating factor and serum deprivation and were allowed to proceed in the cell cycle by addition of the lymphokine in the presence or absence of 8-Br-cAMP. 3H-thymidine incorporation assays showed that addition of 8-Br-cAMP inhibited the entry of cells into S phase and the subsequent proliferation. Northern analysis showed that 8-Br-cAMP had opposite effects on c-fos and c-myc mRNA induction. 8-Br-cAMP induced c-fos in the absence of any GM-CSF. In the presence of GM-CSF, c-fos mRNA was superinduced (30-fold induction compared to four- to fivefold by each signal alone). On the contrary, 8-Br-cAMP was not able to induce c-myc in the absence of growth factor and hardly interfered with the induction of c-myc by GM-CSF. Phorbol myristate acetate (PMA), a pharmacological activator of the lipid and CA++-dependent protein kinase C, was shown to induce nuclear proto-oncogene mRNA in the GM-CSF-dependent cell line. We investigated the effect of 8-Br-cAMP on PMA-induced c-fos and c-myc mRNA levels. When both cAMP dependent and lipid-dependent kinase systems were co-stimulated in the absence of GM-CSF, c-fos message was again superinduced (60-fold induction). On the contrary, c-myc message induction by PMA was inhibited by 80% by coactivation of cAMP-dependent protein kinase with 8-Br-cAMP. Our data indicate that an antiproliferative signal induces or even superinduces c-fos message and hardly interferes with c-myc induction, suggesting that the intracellular pathways resulting in c-fos and c-myc induction may be distinct and that two different pathways can lead to c-fos induction, with synergistic effects when both are activated.  相似文献   

13.
14.
15.
Exposure of serum-deprived 3T3-L1 fibroblasts to phorbol 12-myristate 13-acetate (PMA), synthetic diacylglycerols, platelet-derived growth factor (PDGF), or pituitary fibroblast growth factor (FGF) resulted in stimulated phosphorylation of an acidic, multicomponent, soluble protein of Mr 80,000. Phosphorylation of this protein was promoted to a lesser extent by epidermal growth factor; however, neither insulin nor dibutyryl cAMP was effective. Phosphoamino acid analysis and peptide mapping of the Mr 80,000 32P-protein after exposure of fibroblasts to PDGF revealed identical patterns to those obtained with PMA or diacylglycerols. In contrast to the Mr 80,000 protein, proteins of Mr 22,000 (and pI 4.4) and Mr 31,000 were also phosphorylated in response to insulin as well as to PMA, diacylglycerols, epidermal growth factor, PDGF, and FGF in these cells. Similar findings were noted in fully differentiated 3T3-L1 adipocytes. Preincubation of the cells with high concentrations of active phorbol esters abolished specific [3H]phorbol 12,13-dibutyrate binding, protein kinase C activity, and immunoreactivity and also prevented stimulated phosphorylation of the Mr 80,000 protein by PMA, diacylglycerols, PDGF, or FGF, supporting the contention that this effect was mediated through protein kinase C. The stimulated phosphorylation of the Mr 22,000 and 31,000 proteins in response to PMA was also abolished by such pretreatment. In contrast, the ability of insulin, PDGF, and FGF to promote phosphorylation of the Mr 22,000 and 31,000 proteins was unaffected in the protein kinase C-deficient cells. We conclude that PDGF and FGF may exert some of their effects on these cells through at least two distinct pathways of protein phosphorylation, phorbol ester-like (P) activation of protein kinase C, and an insulin-like (I) pathway exemplified by phosphorylation of the Mr 22,000 and 31,000 proteins.  相似文献   

16.
Expression of the c-fos, c-myc, and c-fms proto-oncogenes has been studied in thioglycollate-elicited murine peritoneal macrophages after exposure to lipopolysaccharide (LPS). After incubation with LPS (20 ng/ml), a transient and rapid induction of the expression of c-fos and c-myc oncogenes could be observed, whereas the RNA levels for c-fms were not affected. Treatment with lipid A, the active moiety of the LPS molecule, increased the c-fos and c-myc expression to a comparable degree. Similar induction of c-fos and c-myc was observed after treatment with phorbol myristate acetate, suggesting that this effect of LPS on murine macrophages might be mediated through stimulation of protein kinase C. Under similar experimental conditions, LPS treatment of macrophages did not trigger DNA synthesis. Treatment with LPS blocked DNA synthesis in macrophages treated with L cell-conditioned medium containing colony-stimulating factor. Thus changes in c-fos and c-myc expression may be elements in the complex series of biochemical events that contribute to macrophage activation and are not necessarily related to induction or priming for cellular proliferation.  相似文献   

17.
Among the earliest responses to mitogens that have been detected in normal quiescent cells are ionic changes: we have described rapid increases in the cytosolic free Ca2+ concentration ([Ca]i) and in the intracellular pH (pHi) in mitogen-stimulated thymocytes and fibroblasts (Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, J. C. (1985) Nature 313, 482-484). Here we investigate the relationship between these ionic signals and the subsequent expression of the c-fos and c-myc proto-oncogenes in murine thymocytes. We show that the plant lectin concanavalin A (ConA), the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) and the Ca2+-ionophore A23187 each causes a rapid increase in both c-fos and c-myc mRNAs. The activation of both genes is completely dependent on the extracellular Ca2+ concentration ([Ca]o) for A23187 and independent of [Ca]o for TPA. Activation of c-myc, but not c-fos, by ConA is partially dependent on [Ca]o. The pHi increases generated by ConA or TPA are not necessary for expression of mRNA from either gene in response to these mitogens. Exogenous 8-bromo-cyclic AMP (but not 8-bromo-cyclic GMP) inhibits the c-myc responses to ConA and TPA. The data also show that neither early c-fos nor c-myc expression is sufficient to commit the cells to DNA synthesis.  相似文献   

18.
When human diploid fibroblasts such as WI-38 cells become crowded, they enter a viable state of quiescence (G0) in which they can remain for prolonged periods of time. These quiescent cells can be induced to re-enter the cell cycle by addition of fresh serum. However, cells held in G0 for long periods before stimulation require more time to enter DNA synthesis as compared to cells held in a quiescent state for short periods. We have used this model system to determine if a close temporal coupling exists between the time of expression of two proto-oncogenes associated with cell growth, c-fos and c-myc, and the time of entry into DNA synthesis. WI-38 cells were stimulated to enter DNA synthesis by the addition of fresh culture medium and serum at various lengths of time after plating, ranging from 7 to 34 days. At hourly intervals thereafter, cells were harvested and total RNA was isolated. These samples were then analyzed by RNase protection assay to determine the levels of c-fos and c-myc mRNA. Our results show that the time and pattern of c-fos and c-myc mRNA accumulation after stimulation is determined only by the time which the cells are treated with serum even when they exhibit a 19-h delay in the entry into DNA synthesis. In all of our experiments, c-fos could be detected 0.5 h after stimulation and remained detectable for approximately 2 h. Likewise, the peak of c-myc accumulation occurred at about 3 h after serum addition, regardless of how long it took to initiate DNA synthesis. These results suggest that the time of c-fos and c-myc induction clearly is not the only factor which determines the length of the prereplicative period and thus the ultimate time of initiation of DNA synthesis.  相似文献   

19.
Treatment of the quiescent, chemically transformed Balb/c mouse 3T3 cells (BP-A31) with fibroblast growth factor (FGF) leads to reinitiation of the cell division cycle in a large proportion of the cells. The characteristics of the mitogenic action of FGF closely resemble those of phorbol esters (activators of protein kinases type C) and differ from those of insulin (mediated by insulin-like growth factor 1 receptors). In particular, the effects of FGF as well as of phorbol-2-myristate-13-acetate (PMA), unlike the effects of insulin, are prevented by a low concentration (7.5 nM) of staurosporin (an efficient inhibitor of protein kinase C) as well as by 3-isobutyl-1-methyl xanthin (IBMX). Both FGF and PMA are good inducers of the accumulation of c-fos and c-jun mRNAs, whereas insulin has little effect. However, FGF was fully active (both as a mitogen and as inducer of c-fos mRNA accumulation) also in cells where the protein kinase C-mediated pathway had been downregulated by a long exposure to phorbol dibutyrate. We propose that the mitogenic effect of FGF does not require activation of protein kinase C, but that the subsequent events in the transduction pathways initiated by FGF and PMA, respectively, are (in part) coincident.  相似文献   

20.
Stimulation of quiescent fibroblasts to growth by polypeptide growth factors is accompanied by the rapid induction of c-fos and c-myc proto-oncogenes. In contrast to fibroblasts, A431 cells respond to epidermal growth factor (EGF) with a decreased growth rate. Here we report that, in spite of its growth inhibitory effect, EGF rapidly induces transient expression of c-fos mRNA, followed by the synthesis of nuclear c-fos protein. In addition, EGF treatment resulted in elevated levels of c-myc expression. Practically identical results were obtained with variant A431 clones that are resistant to the inhibitory effect of EGF on cell proliferation. These observations suggest that in A431 cells c-fos and c-myc induction is a primary consequence of growth factor-receptor interaction. Indeed, efficient induction of both genes was also observed with cyanide bromide-cleaved EGF, which has previously been shown to be non-mitogenic but able to trigger early events induced by EGF. We observed strong induction of c-fos and to a lesser extent of c-myc also by TPA, and by the calcium ionophore A23187, indicating an important role for kinase C in proto-oncogene activation by growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号