首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant biomass, net primary productivity and dry matter turnover were studied in a grassland situated in a tropical monsoonal climate at Kurukshetra, India (29°58′N, 76°51′E). Based on differences in vegetation in response to microrelief, three stands were distinguished on the study site. The stand I was dominated by Sesbania bispinosa, stand II represented mixed grasses and stand III was dominated by Desmostachya bipinnata. Floristic composition of the three stands revealed the greatest number of species on stand II (75). The study of life form classes indicated a thero-cryptophytic flora. The biomass of live shoots in all the three stands attained a maximum value in September (424–1921 g m-2) and below ground plant biomass in November (749–1868 g m-2). The annual above ground net primary production was greatest on stand I (2143 g m-2) and lowest on stand II (617 g m-2). The rate of production was highest during the rainy season (15.34 to 3.18 g m-2 day-2). Below ground net production ranged from 1592 to 785 g m-2 y-2 and the rates were high in winter and summer seasons. Total annual net primary production was estimated to be 3141, 1403, 2493 and 2134 g m-2 on stands I, II, III and on the grassland as a whole, respectively. The turnover of total plant biomass plus below ground biomass indicated almost a complete replacement of phytomass within the year. The system transfer functions showed greater transfer of material from total net primary production to the shoot compartment during rainy season and to the root compartment during winter and summer seasons.  相似文献   

2.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

3.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

4.
Abstract

The aim of this study was to investigate the possible effects of coppice conversion to high forest on the beech fine-root systems. We compared the seasonal pattern of live and dead fine-root mass (d < 2 mm), production and turnover in three beech stands that differed in management practices. Tree density was higher in the 40-year-old coppice stand than in the stands that were converted from coppice to high forest in 1994 and 2004, respectively. We found that a reduction in tree density reduced the total fine-root biomass (Coppice stand, 353.8 g m?2; Conversion 1994 stand, 203.6 g m?2; Conversion 2004 stand, 176.2 g m?2) which continued to be characterised by a bimodal pattern with two major peaks, one in spring and one in early fall. Conversion to high forest may also affect the fine-root soil depth distribution. Both fine-root production and turnover rate were sensitive to management practices. They were lower in the Coppice stand (production 131.5 g m?2 year?1; turnover rate 0.41 year?1) than in the converted stands (1994 Conversion stand: production 232 g m?2 year?1, turnover rate 1.06 year?1; 2004 Conversion stand: production 164.2 g m?2 year?1, turnover rate 0.79 year?1).  相似文献   

5.
A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northem Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m-2 d-1 (carbon uptake by ecosystem) to + 2 g C m-2 d-1 (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m-2 d-1, dropping to + 0.2 g C m-2 d-1 in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m-2 d-1) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m-2 y-1, with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m-2 y-1) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g C m-2) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968–1989 showed = 10–20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y-1). Moss NPP ranged from 19 to 114 g C m-2 y-1; spruce NPP from 81 to 150 g C m-2 y-1; spruce growth (NPP minus litterfall) from 34 to 103 g C m-2 y-1; NEE ranged from +37 to -142 g C m-2 y-1. Values for these carbon balance terms in 1994 were slightly smaller than the 1969–89 means. Higher ecosystem productivity years (more negative NEE) generally had early springs and relatively wet summers; lower productivity years had late springs and relatively dry summers.  相似文献   

6.
Pringle  J. D.  Ugarte  R.  Semple  R. E. 《Hydrobiologia》1990,(1):317-323
Western Prince Edward Island Irish moss (Chondrus crispus) has been intensively dragraked since 1966. As well, most unattached fronds removed by wave surge, ice, etc. are brought to shore by waves and currents, where they are harvested eagerly. Accurate annual fishing yields were recorded between 1966 and 1981 inclusive. Given that herbivore densities are reduced, likely due to the intensive raking, and that mean annual bycatch (non-Irish moss seaweeds) (23.4 %) and commercial bed sizes (873 ha) were known, the fishing yields thus were considered a unique database from which to calculate net primary production (NPP). Factors used to convert from wet to dry wt (DW), and from dry wt to carbon were 0.22 an 0.31, respectively. Calculated mean annual NPP values were as follows: 2.101 ± 0.654 t (DW) ha–1 y–1; 210.1 g DW m–2 yr–1 and 63.0 g C m–2 yr–1. These values are much lower than those calculated for northwest Atlantic kelp and rockweed but similar to that determined for northeast Atlantic Gracilaria verrucosa. The interannual variability pattern for NPP was similar for both the wild Irish moss harvest and that of experimental Chondrus crispus outplants placed in one of the 14 commercial beds.  相似文献   

7.
Data from remote sensing and Eddy towers indicate that forests are not always net sinks for atmospheric CH4. However, studies describing specific sources within forests and functional analysis of microorganisms on sites with CH4 turnover are scarce. Feather moss stands were considered to be net sinks for carbon dioxide, but received little attention to their role in CH4 cycling. Therefore, we investigated methanogenic rates and pathways together with the methanogenic microbial community composition in feather moss stands from temperate and boreal forests. Potential rates of CH4 emission from intact moss stands (n = 60) under aerobic conditions ranged between 19 and 133 pmol CH4 h?1 gdw?1. Temperature and water content positively influenced CH4 emission. Methanogenic potentials determined under N2 atmosphere in darkness ranged between 22 and 157 pmol CH4 h?1 gdw?1. Methane production was strongly inhibited by bromoethane sulfonate or chloroform, showing that CH4 was of microbial origin. The moss samples tested contained fluorescent microbial cells and between 104 and 105 copies per gram dry weight moss of the mcrA gene coding for a subunit of the methyl CoM reductase. Archaeal 16S rRNA and mcrA gene sequences in the moss stands were characteristic for the archaeal families Methanobacteriaceae and Methanosarcinaceae. The potential methanogenic rates were similar in incubations with and without methyl fluoride, indicating that the CH4 was produced by the hydrogenotrophic rather than aceticlastic pathway. Consistently, the CH4 produced was depleted in 13C in comparison with the moss biomass carbon and acetate accumulated to rather high concentrations (3–62 mM). The δ13C of acetate was similar to that of the moss biomass, indicating acetate production by fermentation. Our study showed that the feather moss stands contained active methanogenic microbial communities producing CH4 by hydrogenotrophic methanogenesis and causing net emission of CH4 under ambient conditions, albeit at low rates.  相似文献   

8.
Paper presents estimates of above-ground, below-ground, and total production in grasslands, meadows and steppe of the forest-steppe and steppe regions, and production of moss peat ecosystems of the northern, middle, and southern taiga forests. Total production varies in grasslands from 520 to 6670 g/(m2 year) and depends on hydrothermal conditions and the regime of the use of herbage, in moss peat it varies from 360 to 1970 g/(m2 year) and is determined by the biology of predominant species, conditions of fluviomineral feeding and heat supply.  相似文献   

9.
Canopy transpiration in a chronosequence of Central Siberian pine forests   总被引:4,自引:0,他引:4  
Tree transpiration was measured in 28, 67, 204 and 383‐y‐old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130‐y‐old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28‐y‐old stand) and 1.6 for stands older than 67‐y. Stand xylem area at 1.3 m height increased from 4 cm2 m?2 (28‐y) to 11.5 cm2 m?2 (67‐y) and decreased again to 7 cm2 m?2 in old stands. Above‐ground living biomass increased from 1.5 kg dry weight m?2 (28‐y) to 14 kg dry weight m?2 (383‐y). Day‐to‐day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree‐to‐tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m?2 s?1) and canopy transpiration (1.5 mm d?1) were reached in the 67‐y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d?1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = ? 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.  相似文献   

10.
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ∼116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m−2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m−2 y−1, which was not different than that of a nearby unburned stand (160 ± 48 g m−2 y−1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m−2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m−2 y−1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m−2 y−1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   

12.
Earthworm communities were studied at six heap sites representing a chronosequence of Alnus glutinosa (black alder) stands (age 3–62 years) and compared with those on an unameliorated heap and in an alder stand (60 years old) on natural soil. Spoil heaps in the open‐cast coal mining area near Sokolov (northwestern Bohemia) were mainly reclaimed using afforestation. No earthworms were found on the virgin heap. Young plots were colonized by euryecious epigeic earthworms (i.e., those living above soil surface), but higher proportions of endogeic species (i.e., soil dwellers), did not appear until after more than 30 years of succession. The density and biomass of earthworms increased from the youngest stand (67 individuals/m2; 5 g/m2) to the older ones (e.g., 407 ind/m2; 13 g/m2 in the 23‐year‐old stand). However, both parameters were low in the oldest stand (35 ind/m2; 3 g/m2), but this may have been the result of extensive soil disturbance. Earthworm populations were often higher in reclaimed sites than in the control alder stand (150 ind/m2; 7 g/m2). However, the community structures were different, with the control being dominated by the litter‐feeding species, Dendrobaena vejdovskyi.  相似文献   

13.
To be able to estimate the cumulative carbon budget at broader scales, it is essential to understand net ecosystem exchanges (NEE) of carbon and water in various ages and types of ecosystems. Using eddy-covariance (EC) in Douglas-fir dominated forests in the Wind River Valley, Washington, USA, we measured NEE of carbon, water, and energy from July through September in a 40-year-old stand (40YR) in 1998, a 20-year-old stand (20YR) in 1999, and a 450-year-old stand (450YR) during both years. All three stands were net carbon sinks during the dry, warm summers, with mean net daily accumulation of –0.30 g C m–2 d–1, –2.76 g C m–2 d–1, and –0.38 g C m–2 d–1, respectively, in the 20YR, 40YR, and 450YR (average of 1998, 1999) stands; but for individual years, the 450YR stand was a carbon source in 1998 (0.51 g C m–2 d–1) and a sink in 1999 (–1.26 g C m–2 d–1). The interannual differences for the summer months were apparent for cumulative carbon exchange at the 450YR stand, which had 46.9 g C m–2 loss in 1998 and 115.9 g C m–2 gain in 1999. As predicted, the 40YR stand assimilated the most carbon and lost the least amount of water to the atmosphere through evapotranspiration.  相似文献   

14.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

15.
Yermakov Z  Rothstein DE 《Oecologia》2006,149(4):690-700
We investigated the changes in soil processes following wildfire in Michigan jack pine (Pinus banksiana) forests using a chronosequence of 11 wildfire-regenerated stands spanning 72 years. The objective of this study was to characterize patterns of soil nutrients, soil respiration and N mineralization with stand development, as well as to determine the mechanisms driving those patterns. We measured in situ N mineralization and soil respiration monthly during the 2002 growing season and used multiple regression analysis to determine the important factors controlling these processes. Growing-season soil respiration rates ranged from a low of 156 g C/m2 in the 7-year-old stand to a high of 254 g C/m2 in the 22-year-old stand, but exhibited no clear pattern with stand age. In general, soil respiration rates peaked during the months of July and August when soil temperatures were highest. We used a modified gamma function to model a temporal trend in total N mineralization (total N mineralization = 1.853−0.276 × age × e −0.814 × age; R 2 = 0.381; P = 0.002). Total N mineralization decreased from 2.8 g N/m2 in the 1-year-old stand to a minimum value of 0.5 g N/m2 in the 14-year-old stand, and then increased to about 1.5 g N/m2 in mature stands. Changes in total N mineralization were driven by a transient spike in N turnover in the mineral soil immediately after wildfire, followed by a gradual accrual of a slow-cycling pool of N in surface organic horizons as stands matured. Thus, in Michigan jack pine forests, the accumulation of surface organic matter appears to regulate N availability following stand-replacing wildfire.  相似文献   

16.
Seasonal changes and vertical distribution of fine (< 2 mm diameter) and coarse (2-10 mm diameter) root mass of Pinus kesiya and fine root and rhizome mass of herbaceous species, and root production were studied in the 6-, 15- and 23-year old Pinus kesiya forest stands at Shillong, in the Meghalaya state of north-east India. Maximum fine and coarse root mass of P. kesiya, and fine root and rhizome mass of the ground vegetation were recorded during the rainy season. The contribution of the tree fine roots in 0-10 cm soil layer declined from 51% in the 6-year old stand to about 33% in the older stands. The major proportion (63-88%) of herbaceous fine root and rhizome mass was concentrated in this soil layer in all the three stands. The majority (36-57%) of tree coarse roots were present in the 10-20 cm layer in all the stands. The biomass and necromass values in the case of fine roots were more or less equal in a given stand, but the coarse roots had 5 to 9 times more live than the dead mass. The proportion of herbaceous fine root mass to the total fine root mass declined from 54% in the 6-year old stand to 30-32% in the 15- and 23-year old stands. The mean total fine root mass (pine + herbaceous species) decreased from 417 g m–2 in the 6-year old stand to 302 in 15-year and 322 g m–2 in the 23-year old stand. Annual fine root production showed a marked decrease from 1055 g m–2 in the 6-year old stand to 743 g m–2 in the 23-year old stand, but coarse root production increased from 169 g m–2 in the 6-year to 466 g m–2  in the 23-year old stand; the total root production thus remained approximately constant.  相似文献   

17.
Productivity studies were carried out from September, 1985 to August, 1987 in two mangrove stands, i.e. estuarine and island fringing, in Dutch bay, a lagoon situated on the northwestern coast of Sri Lanka. Net above-ground primary productivity was measured by monitoring litterfall and above-ground biomass increment. The average annual rate of litterfall in the estuarine and island-fringing mangrove stands are 588.14 g m–2 (approximately 6 t ha–1) and 407.33 g m–2 (approximately 4 t ha–1) respectively. The average annual rates of above ground woody growth are 614.74 g m–2 (approximately 6 t ha–1) in the estuarine stands and 286.8 g m–2 (approximately 3 t ha–1) in the island-fringing mangrove stands. Hence estuarine mangrove stands record a higher annual rate of above-ground net primary production (NPP; 1207.88 g m–2 or approximately 12 t ha–1) than the fringing mangrove stands (694.22 g m–2); approximately 7 t ha–1). The annual rate of NPP in the water front zones of the stands (1300.47 g m–2 in the estuarine stands and 874.56 g m–2 in the fringing stands) are greater than those in the back-mangrove zones (115.28 g m–2 in the estuarine stands and 513.88 g m–2 in the island-fringing stands). These variations may be attributed to the differences in tidal flushing and influence of freshwater in the two localities.  相似文献   

18.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   

19.
Soil core and root ingrowth core methods for assessing fine-root (< 2 mm) biomass and production were compared in a 38-year-old Scots pine (Pinus sylvestris L) stand in eastern Finland. 140 soil cores and 114 ingrowth cores were taken from two mineral soil layers (0–10 cm and 10–30 cm) during 1985–1988. Seasonal changes in root biomass (including both Scots pine and understorey roots) and necromass were used for calculating fine-root production. The Scots pine fine-root biomass averaged annually 143 g/m2 and 217 g/m2 in the upper mineral soil layer, and 118 g/m2 and 66 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The fine-root necromass averaged annually 601 g/m2 and 311 g/m2 in the upper mineral soil layer, and 196 g/m2 and 159 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The annual fine-root production in a Scots pine stand in the 30 cm thick mineral soil layer, varied between 370–1630 g/m2 in soil cores and between 210 – 490 g/m2 in ingrowth cores during three years. The annual production calculated for Scots pine fine roots, varied between 330–950 g/m2 in soil cores and between 110 – 610 g/m2 in ingrowth cores. The horizontal and vertical variation in fine-root biomass was smaller in soil cores than in ingrowth cores. Roots in soil cores were in the natural dynamic state, while the roots in the ingrowth cores were still expanding both horizontally and vertically. The annual production of fine-root biomass in the Scots pine stand was less in root ingrowth cores than in soil cores. During the third year, the fine-root biomass production of Scots pine, when calculated by the ingrowth core method, was similar to that calculated by the soil core method. Both techniques have sources of error. In this research the sampling interval in the soil core method was 6–8 weeks, and thus root growth and death between sampling dates could not be accurately estimated. In the ingrowth core method, fine roots were still growing into the mesh bags. In Finnish conditions, after more than three growing seasons, roots in the ingrowth cores can be compared with those in the surrounding soil. The soil core method can be used for studying both the annual and seasonal biomass variations. For estimation of production, sampling should be done at short intervals. The ingrowth core method is more suitable for estimating the potential of annual fine-root production between different site types.  相似文献   

20.
Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even‐aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven‐aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (~?480 to ?500 g C m?2 yr?1). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (?4 g C m?2 yr?1), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low‐to‐moderate annual net CO2 uptake (?34 to ?193 g C m?2), but with annual harvest taken into account it will be a source of CO2 (+97 to +386 g C m?2). The annually changing patchwork of crops will have strong consequences on the regions' seasonal and annual carbon exchange. Thus, not only land use, but also land‐use history and site‐specific management decisions affect the large‐scale carbon balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号