首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using real-time PCR to determine transgene copy number in wheat   总被引:1,自引:0,他引:1  
Transgene copy number is usually determined by means of Southern blot analysis which can be time consuming and laborious. In this study, quantitative real-time PCR was developed to determine transgene copy number in transgenic wheat. A conserved wheat housekeeping gene,puroindoline-b, was used as an internal control to calculate transgene copy number. Estimated copy number in transgenic lines using real-time quantitative PCR was correlated with actual copy number based on Southern blot analysis. Real-time PCR can analyze hundreds of samples in a day, making it an efficient method for estimating copy number in transgenic wheat.  相似文献   

2.
3.
Various chitinases have been shown to inhibit the growth of fungal pathogens in in vitro as well as in planta conditions. chi194, a wheat chitinases gene encoding a 33-kDa chitinase protein, was overexpressed in tomato plants (cv. Pusa Ruby) under the control of maize ubiquitin 1 promoter. The integration of transgene in tomato plants was confirmed with polymerase chain reaction (PCR) and Southern blot analysis. The inheritance of the transgene in T1 and T2 generations were shown by molecular analysis and the hygromycin sensitivity test. The broad range of chitinase activity was observed among the transgenic lines in T0 and a similar range was retained in the T1 and T2 generations. Most importantly, the transgenic tomato lines with high chitinase activity were found to be highly resistant to the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Thus, the results demonstrated that the expression of the wheat endochitinase chi194 in tomato plants confers resistance against Fusarium wilt disease caused by the fungal pathogen Fusarium oxysporum f. sp. lycopersici.  相似文献   

4.
Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants, so transgene copy number analysis is identified as one most important task after obtaining transgenic plants. In this paper, TaqMan real-time PCR was used to estimate the copy number of exogenous MAC12.2 and NPTII genes in transgenic precocious trifoliate orange (Poncirus trifoliata [L.] Raf) in order to overcome the limitations of Southern blot analysis, which is labor-intensive, time-consuming, in considerable needs of DNA, etc. We developed a real-time PCR assay which permitted the determination of the copy number of transgene (MAC12.2 and NPTII), relative to a conserved endogenous gene (PtLTP) in transgenic lines. R value is 0.92 by comparing the results to that of Southern blot analysis, indicating a strong correlation coefficient between TaqMan real-time PCR assay and Southern blot method.  相似文献   

5.
In transgenic plants, the number of transgene copies can greatly influence the level of expression and genetic stability of the target gene. Transgene copy numbers are estimated by Southern blot analysis, which is laborious and time-consuming, requires relatively large amounts of plant materials, and may involve hazardous radioisotopes. Here we report the development of a sensitive, convenient real-time PCR technique for estimating the number of transgene copies in transgenic rapeseed. This system uses TaqMan quantitative real-time PCR and comparison with a novel, confirmed single-copy endogenous reference gene, high-mobile-group protein I/Y (HMG I/Y), to determine the numbers of copies of exogenous β-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. TheGUS andnptII copy numbers in primary transformants (T0) were calculated by comparing threshold cycle (C T) values of theGUS andnptII genes with those of the internal standard,HMG I/Y. This method is more convenient and accurate than Southern blotting because the number of copies of the exogenous gene could be directly deduced by comparing itsC T value to that of the single-copy endogenous gene in each sample. Unlike other similar procedures of real-time PCR assay, this method does not require identical amplification efficiencies between the PCR systems for target gene and endogenous reference gene, which can avoid the bias that may result from slight variations in amplification efficiencies between PCR systems of the target and endogenous reference genes.  相似文献   

6.
7.
The integration, expression, and stability of the Respiratory Syncytial Virus (RSV)-F protein was analyzed in a T3 generation of transgenic cherry tomato, Solanum lycopersicum L. cv. Swifty Belle, plants. Expression of the RSV-F antigen, under the control of the fruit-specific promoter E-8, was investigated in T3 plants derived from a transgenic line, identified as #120. Transgene integration of the RSV-F gene in the T3 generation was initially determined by polymerase chain reaction (PCR). PCR analysis from line 120-7-2 revealed that all T3 plants were homozygous for the transgene; whereas, line 120-6-4 showed segregation for the transgene. Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of RSV-F protein in these plants, and protein levels ranged from 0–22 μg/g of fresh weight, with an average of ~3 μg/g fresh weight. Southern blot analysis of the highest expressing plants revealed presence of a single copy of the RSV-F transgene in these plants.  相似文献   

8.
9.
10.
The stability and heritability of three marker genes was investigated in a population of twelve independent transgenic cereal lines (six wheat and six tritordeum). Integration patterns, inheritance of structural transgenes and inheritance of expression were analysed in the T0 and T1 generations for all 12 lines. Transmission and expression were analysed in the T2 generation for 9 lines and in the T3 generation for the six wheat lines. Inheritance of integration patterns was highly stable, and transmission of the transgenes and inheritance of their expression followed Mendelian ratios in the majority of lines. A gradual reduction in uidA expression was observed over three generations, which was not accompanied by a similar reduction in bar expression. Some unexpected phenomena associated with transgene inheritance were also observed and are discussed. Received: 9 February 1999 / Accepted: 11 February 1999  相似文献   

11.
We present a simple and rapid method for screening second-generation transgenic rice plants (T1) to identify homozygous plants. The plasmid (pfd11) used for rice transformation contains a partially deleted cytochrome c gene (cyc) for comparing with the endogenous cyc for copy number. After polymerase chain reaction (PCR) amplification of a segment of the cyc in transgenic rice DNA followed by agarose gel electrophoresis, two specific bands are obtained. The upper band represents the endogenous cyc, and the lower band represents the partially deleted cyc in the transgene. The first-generation plants (T0) that harbor a single copy of the transgene are selected based on the fact that the density of the lower band is half as dense as the upper band. Next, only plants harboring a single copy of the transgene are advanced to the second generation (T1). The same PCR procedure is used again, and homozygous T1 plants are easily identified from samples in which the intensity of the two bands is the same.  相似文献   

12.
Drought tolerance of the wheat cultivar Bobwhite was previously enhanced by transformation with a construct containing the wheat DREB3 gene driven by the stress‐inducible maize Rab17 promoter. Progeny of a single T2 transgenic line were used as pollinators in crosses with four elite bread wheat cultivars from Western Australia: Bonnie Rock, IGW‐2971, Magenta and Wyalkatchem, with the aim of evaluating transgene performance in different genetic backgrounds. The selected pollinator line, BW8‐9‐10‐3, contained multiple transgene copies, had significantly improved drought tolerance compared with wild‐type plants and showed no growth and development penalties or abnormalities. A single hybrid plant was selected from each cross‐combination for three rounds of backcrossing with the corresponding maternal wheat cultivar. The transgene was detected in all four F1BC3 combinations, but stress‐inducible transgene expression was found in only three of the four combinations. Under well‐watered conditions, the phenotypes and grain yield components of the F2BC3 transgene‐expressing lines were similar to those of corresponding recurrent parents and null‐segregants. Under severe drought conditions, the backcross lines demonstrated 12–18% higher survival rates than the corresponding control plants. Two from four F3BC3 transgenic lines showed significantly higher yield (18.9% and 21.5%) than control plants under limited water conditions. There was no induction of transgene expression under cold stress, and therefore, no improvement of frost tolerance observed in the progenies of drought‐tolerant F3BC3 lines.  相似文献   

13.
 Our long-term goal is to control wheat diseases through the enhancement of host plant resistance. The constitutive expression of plant defense genes to control fungal diseases can be engineered by genetic transformation. Our experimental strategy was to biolistically transform wheat with a vector DNA containing a rice chitinase gene under the control of the CaMV 35 S promoter and the bar gene under control of the ubiquitin promoter as a selectable marker. Immature embryos of wheat cv ‘Bobwhite’ were bombarded with plasmid pAHG11 containing the rice chitinase gene chi11 and the bar gene. The embryos were subcultured on MS2 medium containing the herbicide bialaphos. Calli were then transferred to a regeneration medium, also containing bialaphos. Seventeen herbicide-resistant putative transformants (T0) were selected after spraying with 0.2% Liberty, of which 16 showed bar gene expression as determined by the phosphinothricin acetyltransferase (PAT) assay. Of the 17 plants, 12 showed the expected 35-kDa rice chitinase as revealed by Western blot analysis. The majority of transgenic plants were morphologically normal and self-fertile. The integration, inheritance and expression of the chi11 and bar genes were confirmed by Southern hybridization, PAT and Western blot analysis of T0 and T1 transgenic plants. Mendelian segregation of herbicide resistance was observed in some T1 progenies. Interestingly, a majority of the T1 progeny had very little or no chitinase expression even though the chitinase transgene was intact. Because PAT gene expression under control of the ubiquitin promoter was unaffected, we conclude that the CaMV 35 S promoter is selectively inactivated in T1 transgenic wheat plants. Received: 12 May 1998 / Accepted: 15 May 1998  相似文献   

14.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   

15.
Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI) transgene under control of the maize ubiquitin constitutive promoter were obtained using the transformation system described here. Proliferating immature zygotic embryos were used as target tissue for bombardment using a particle inflow gun. Different culture and selection strategies were assessed in order to obtain an optimised mannose selection protocol. Stable integration of the manA gene into the genome of pearl millet was confirmed by PCR and Southern blot analysis. Stable integration of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2 progeny of two independent transformation events with no more than four to ten copies of the transgene. Similar to results obtained from previous studies with maize and wheat, the manA gene was shown to be a superior selectable marker gene for improving transformation efficiencies when compared to antibiotic or herbicide selectable marker genes.Abbreviations 2,4-D: 2,4-Diclorophenoxyacetic acid - IAA: Indole acetic acid - ICRISAT: International Crops Research Institute for the Semi-Arid Tropics - IZEs Immature zygotic embryos Communicated by H. Lörz  相似文献   

16.
Wu J  Luo X  Wang Z  Tian Y  Liang A  Sun Y 《Biotechnology letters》2008,30(3):547-554
A synthetic scorpion Hector Insect Toxin (AaHIT) gene, under the control of a CaMV35S promoter, was cloned into cotton via Agrobacterium tumefaciens-mediated transformation. Southern blot analyses indicated that integration of the transgene varied from one to more than three estimated copies per genome; seven homozygous transgenic lines with one copy of the T-DNA insert were then selected by PCR and Southern blot analysis. AaHIT expression was from 0.02 to 0.43% of total soluble protein determined by western blot. These homozygous transgenic lines killed larvae of cotton bollworm (Heliothis armigera) by 44–98%. The AaHIT gene could used therefore an alternative to Bt toxin and proteinase inhibitor genes for producing transgenic cotton crops with effective control of bollworm.  相似文献   

17.
Two barley transformation systems, Agrobacterium-mediated and particle bombardment, were compared in terms of transformation efficiency, transgene copy number, expression, inheritance and physical structure of the transgenic loci using fluorescence in situ hybridisation (FISH). The efficiency of Agrobacterium-mediated transformation was double that obtained with particle bombardment. While 100% of the Agrobacterium-derived lines integrated between one and three copies of the transgene, 60% of the transgenic lines derived by particle bombardment integrated more than eight copies of the transgene. In most of the Agrobacterium-derived lines, the integrated T-DNA was stable and inherited as a simple Mendelian trait. Transgene silencing was frequently observed in the T1 populations of the bombardment-derived lines. The FISH technique was able to reveal additional details of the transgene integration site. For the efficient production of transgenic barley plants, with stable transgene expression and reduced silencing, the Agrobacterium-mediated method appears to offer significant advantages over particle bombardment.  相似文献   

18.
To investigate the effect of matrix attachment regions (MARs) on transgene expression levels and stability in cereal crops, we generated 83 independent transgenic rice callus lines containing a gusA expression cassette either as a simple expression unit, or flanked with MARs from tobacco (Rb7) or yeast (ARS1). Transgenic rice plants were regenerated from these callus lines and analysed at the structural and expression levels over two generations. In the first generation (T0), both Rb7 and ARS1 MARs significantly increased transgene expression levels. In the populations of plants containing MARs, we observed a significant reduction in the number of non-expressing lines compared to the population of plants without MARs. However, variation in β-glucuronidase (GUS) expression levels between independent lines was similar both in the presence and absence of flanking MARs. In the presence of MARs, GUS activity increased in proportion to transgene copy number up to 20 copies, but was generally reduced in lines carrying a higher copy number. In the population of plants without MARs, there was no correlation between expression level and transgene copy number. In the second generation (T1), transgene expression levels were significantly correlated with those of the T0 parents. The Rb7 MARs significantly improved the stability of transgene expression levels over two generations, and therefore appear to offer protection against transgene silencing. Our study shows that the exploitation of MARs may be an important strategy for stabilising transgene expression levels in genetically engineered cereals.  相似文献   

19.
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker‐free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium‐mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker‐free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T‐DNA regions. The average co‐integration frequency of the gus and the bar genes located on the two independent T‐DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker‐free plants was related to the number of bar gene copies integrated in the genome. Marker‐free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号