首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
2.
本研究旨在建立一套适合水牛腔前卵泡体外生长发育的培养体系.取用来自本地屠宰场的中国沼泽型水牛卵巢,采用梳刮法回收腔前卵泡,以McCoys 5a作为基础培养液,分别用微孔板培养法、二维培养法、三维培养法进行体外培养.结果表明:不同培养方法对水牛腔前卵泡的体外发育能力有显著差异.培养至10 d,三维培养法的卵泡存活率显著高于微孔板培养法和二维培养法的卵泡存活率(65.05% vs 33.08%,49.52%,P<0.05);二维培养法的卵泡成腔率为1.91%(2/105),三维培养法的卵泡成腔率为1.94%(2/103),而微孔培养法的卵泡未发现成腔;三维培养法的卵泡直径平均增长显著高于微孔板培养法和二维培养法的卵泡直径增长(13.03±5.37 μm vs 7.53±2.26 μm,10.27±4.24 μm,P<0.05).由此可见,三维培养法是水牛腔前卵泡的有效体外培养方法.  相似文献   

3.
以分离获得的腔前卵泡数量、正常卵泡率和72h体外培养存活率为指标,比较了酶消化法、梳刮法和剪碎法3种不同方法分离塔里木马鹿Cervus elaphus yarkandensis腔前卵泡的效果。结果表明:在卵巢数目相同的情况下,以酶消化法平均获得的腔前卵泡数最多,梳刮法次之,剪碎法最少,3种不同分离方法获得腔前卵泡数量之间存在极显著差异(P<0.01);梳刮法和剪碎法分离获得的腔前卵泡正常率均极显著高于酶消化法(P<0.01);梳刮法和剪碎法分离获得的腔前卵泡在体外培养24h、48h和72h后的存活率极显著和显著高于酶消化法(培养24h、48h后,P<0.01;培养72h后,P<0.05)。由此可见,梳刮法是塔里木马鹿腔前卵泡更有效的分离方法。  相似文献   

4.
人腔前卵泡分离及培养   总被引:1,自引:0,他引:1  
采用机械吹打、胶原酶消化、镜下显微解剖及胶原酶消化加镜下显微解剖4种卵泡提取方式并相互对比.将分离得到的腔前卵泡在含FSH0.5IU/mL、1.0IU/mL和2.0IU/mL的培养液中培养,检测其E2分泌量.与机械吹打、胶原酶消化相比,胶原酶消化加镜下显微解剖法不仅提取卵泡多(P<0.01),而且可以得到原始、初级、次级各级卵泡.但操作时间较长(P<0.01).得到的腔前卵泡在FSH为0.5IU/mL、1.0IU/mL和2.01IU/mL的培养液中培养,所分泌的E2分别为10.86pg±4.11pg、31.55pg±9.34pg和43.82pg±18.76pg,较之对照组的4.99pg±2.09pg有显著性差异(P<0.01),E2的分泌量与FSH浓度呈剂量依赖性关系.FSH有促进腔前卵泡分泌E2的作用.  相似文献   

5.
回顾腔前卵泡体外分离方法的研究历史,着重论述牛、羊、猪等家畜的腔前卵泡体外分离方法及其影响因素,以期为建立一种更为有效的分离方法提供理论基础.  相似文献   

6.
蒲勇  张运海  章孝荣 《生命科学》2013,(11):1126-1134
哺乳动物卵巢中含有数以万计的腔前卵泡(preantral follicles),仅不足1%能够发育至预排卵卵泡。建立哺乳动物腔前卵泡有效分离及体外培养技术体系,能够大量利用腔前卵泡,增加体外成熟卵母细胞数量,对哺乳动物胚胎体外生产、克隆及转基因动物生产等胚胎工程技术的研究与应用,以及在体外条件下揭示哺乳动物卵泡发育机理,都具有重要的理论意义和实用价值。鉴于卵巢质地与卵泡划、发生周期的固有差异,不同物种腔前卵泡分离方法与培养方式亦有所不同。同时,培养基类型、卵泡问相互作用、促性腺激素与细胞因子等因素均会对卵泡的体外发育产生影响。系统阐述了腔前卵泡的分离方法、培养方式以及相关因素对卵泡发育的影响,期望为从事相关研究的学者提供参考。  相似文献   

7.
FSH对腔前卵泡生长发育的影响   总被引:1,自引:1,他引:0  
随着腔前卵泡体外培养体系的发展,对其影响因子的研究也逐渐深入,促性腺激素(FSH)在卵泡的生长和发育过程中发挥了重要的作用。本实验方法是以昆明小鼠为模型,机械分离并选择120~140μm的腔前卵泡,以添加10%血清和1%ITS的α-MEM为基础培养,分为正常添加FSH和不添加FSH组,以及在培养的0 d、2 d、4 d、6d、8 d添加FSH(100 mIU/ml)组,探讨腔前卵泡的生长发育情况。结果表明:正常添加组其卵泡的存活率、出腔率、GVBD率和2-cell胚胎率(78.7%、55.0%、35.0%和7.5%)显著高于培养液中未添加FSH的结果(分别为13.7%、8.8%、6.3%和0)(P<0.05);6 d之前添加FSH的培养组腔前卵泡能够正常生长和发育;2~4 d添加FSH可能更利于卵母细胞的成熟,以及E2的产生依赖于FSH的存在。  相似文献   

8.
为了研究褪黑激素(Melatonin,MLT)对休情期银黑狐腔前卵泡卵母细胞超微结构的影响。本研究选取健康7月龄埋植和未埋植MLT的银黑狐各5只,取其左侧卵巢共计10枚,制备超薄切片后利用透射电镜分别观察每枚卵巢的各级腔前卵泡各1-5个,并进行拍照。结果埋植和未埋植MLT的银黑狐原始卵泡卵母细胞内均有少量线粒体和高尔基体,而未埋植MLT的银黑狐卵母细胞中还可见少量滑面内质网;初级卵泡卵母细胞内,均开始形成不完整透明带,线粒体及内质网数量均有所增加,沿透明带出现少量皮质颗粒;次级卵泡阶段,未埋植MLT银黑狐卵母细胞微绒毛数量较埋植MLT的多,其余细胞器未见差异。结果表明,MLT对休情期银黑狐卵巢腔前卵泡卵母细胞的线粒体、脂滴、高尔基体、皮质颗粒等细胞器的发育没有影响,仅对初级卵泡阶段内质网的发育有抑制作用。  相似文献   

9.
绍鸭卵巢卵泡发育相关新EST的分离与表达   总被引:1,自引:0,他引:1  
束刚  陈杰  倪迎冬  周玉传  赵茹茜 《遗传学报》2004,31(10):1095-1102
采用银染mRNA差异显示方法从绍鸭卵巢等级卵泡中分离并筛选到 3个差异表达序列标签 (ExpressedSequenceTags ,ESTs)SXDF0 2 0 1(2 71bp)、SXDF0 2 0 2 (2 0 0bp)和SXDF0 2 0 3(173bp) ,通过测序和BLAST检索 ,发现SXDF0 2 0 1与GenBank中登录的所有物种的所有序列均无同源性 ,是在绍鸭卵巢卵泡发现的新EST ,现已登录GenBank(GenBank登录号 :CB0 72 6 2 9) ,而SXDF0 2 0 2和SXDF0 2 0 3则分别与GenBank公布的鸡的EST和肌胃肌球蛋白重链高度同源。用 5′ RACE将SXDF0 2 0 1延伸至 5 4 4bp ,经过BLAST再次检索 ,仍然未发现中度同源序列采用相对定量RT PCR方法进一步研究SXDF0 2 0 1和SXDF0 2 0 2在绍鸭组织中的时空特异性表达 ,发现这两个EST在产蛋高峰期绍兴鸭的下丘脑、垂体、肌肉、肝脏、脂肪等组织都有表达 ;SXDF0 2 0 1在 30日龄卵巢的表达水平显著高于 6 0 (P <0 0 5 )和 90 (P =0 0 15 )日龄 ;而SXDF0 2 0 2在卵巢发育的不同阶段的表达水平没有变化 ;SXDF0 2 0 1在卵巢卵泡颗粒层中的表达总体高于膜层 ,SXDF0 2 0 2在颗粒层中的表达F3 >F5>Fw(P <0 0 1) ,而在F1卵泡降至最低 (P <0 0 1) ,膜层中以Fw 卵泡表达水平最高 (P <0 0 1)。  相似文献   

10.
发情周期不同时期猪卵泡颗粒细胞凋亡的观察   总被引:3,自引:0,他引:3  
为探讨猪发情周期不同时期卵泡发育和闭锁的规律及机理,本实验通过TUNEL原位标记,H,E.染色以及放射免疫测定等手段研究了猪发情周期不同阶段卵巢表面各类卵泡数量的变化。各类卵泡中颗粒细胞的凋亡比例,闭锁卵泡的形态变化以及发情周期各阶段血清孕酮及雌二醇水平的变化等问题。卵泡的总数在发情间期最多,为26.8个/卵巢,发情期最少,为7.4个/卵巢。小放泡的数量在发情间期最多。为15个/卵巢,在发性期数量最少,为5.7个/卵巢。中等卵泡数量在发情间蜞多,为8.5个/卵巢,在发情后期卵巢中无中等卵泡。大卵泡的数量在发情前期最多,为7.4个/卵巢,在发情后期最少,为0个。小卵泡的颗粒细胞凋亡比例(各时期平均21.03%)显著高于大卵泡,在发情后期显著降低。中等卵泡的颗粒细胞凋亡比例(平均16.6%)在发情前期显著低于其它各期。大卵泡的颗粒细胞凋亡比例(平均11.2%)在发情周期各阶段无显著差异,均显著低于中等卵泡和小卵泡。  相似文献   

11.
The aims of this study were the following: (1) to define an optimal period for the IVC of isolated caprine preantral follicles, (2) to verify the relationship between follicular morphology (intact, extruded, and degenerate follicles) and estradiol production, and (3) to evaluate the effects of the bidimensional (2D) and three-dimensional (3D) culture systems on the in vitro development of caprine preantral follicles. Three experiments were performed. In experiments 1 and 2, the isolated secondary follicles were cultured for 18, 24, and 30 days or 30, 36, and 42 days, respectively. In experiment 3, the optimal culture period from experiment 2 was used for 2D and 3D culture systems. After culture, the oocytes were submitted to IVM. The morphological integrity, antral cavity formation rates, follicular diameter, presence of healthy, grown oocytes (≥110 μm), rates of resumption of meiosis, and estradiol concentrations were evaluated. In experiment 1, the percentage of oocytes that resumed meiosis was higher in oocytes cultured for 30 days (48.84%) than in oocytes cultured for 18 and 24 days (15% and 20.93%, respectively). In experiment 2, the percentage of oocytes that resumed meiosis was significantly higher in oocytes cultured for 30 and 36 days (47.5% and 50%, respectively) than in oocytes cultured for 42 days (20%). The estradiol concentrations on Day 12 of culture were similar for normal and extruded follicles and higher than those observed in degenerate follicles at the end of the culture period. In conclusion, the 36-day culture period resulted in the highest rates of meiosis resumption. In addition, because the loss of follicular integrity affects the patterns of estradiol production, follicular integrity is a good predictor of follicular quality.  相似文献   

12.
Small (150–250 μm in diameter) and large (251–400 μm in diameter) preantral follicles (PFs) in sheep were cultured for 6 days in four different concentrations of transforming growth factor-alpha (TGF-), epidermal growth factor (EGF), FSH and LH. Proportions of follicles exhibiting growth, antrum formation and increase in follicular and oocyte diameter were the initial indicators of development. The ability of the oocytes isolated from these cultured follicles to mature to metaphase II (MII), after 24 h culture in a known in vitro maturation medium was the final criterion of success. TGF- 2.5 ng ml−1, EGF 50 ng ml−1 and FSH 1 and 2 μg ml−1 supported good initial growth of the PFs. Thirty and seventeen percent of the oocytes from the large PFs cultured in TGF- 2.5 ng ml−1 and FSH 2 μg ml−1 respectively, matured to the MII stage. These proportions for oocytes from small PFs were 11 and 6%, respectively. Oocytes from follicles cultured in EGF did not mature to the MII stage. LH at all concentrations tested and TGF-, EGF and FSH above 5, 50 ng ml−1 and 2 μg ml−1, respectively, induced degeneration of the PFs. It was concluded that (i) TGF- 2.5 ng ml−1 supports development of large PFs in sheep to obtain meiotically competent oocytes, (ii) PFs > 250 μm in initial diameter develop better in vitro, and (iii) in vitro development of sheep PFs could be obtained independent of gonadotropin stimulation.  相似文献   

13.
Sheep preantral follicles (PFs) measuring 250-400 μm in diameter were cultured for six days in serum-free media supplemented differently with growth factors and hormones. Subsequently, oocytes from the cultured follicles were subjected to an additional 24 h of in vitro maturation (IVM) followed by in vitro fertilization (IVF) and embryo culture for 6 days. Five different experiments were conducted. In the first experiment individual concentrations of Insulin-Transferrin-Selenite (ITS), Insulin-like growth factor-I (IGF-I), Transforming growth factor-beta (TGF-β), Insulin (INS), and Growth hormone (GH) that supported the best in vitro development of the PFs were determined. The influence of different combinations of the above hormones and growth factors at their best concentrations as determined in the first experiment was investigated in the second experiment. In the third experiment the best combinations of the growth factors and hormones obtained in the second experiment were additionally supplemented with Thyroxin (T4) and follicle stimulating hormone (FSH) and the influence on in vitro development of the PFs was studied. In the fourth experiment, two methods of culturing PFs—micro drops and agar gel embedding—were compared. In the fifth experiment oocytes from cultured PFs were subjected to IVF and in vitro development of the resulting embryos was followed to the blastocyst stage.Based on the proportion of the PFs exhibiting growth, mean increase in diameter, proportions of PFs developing antrum, ovulations in vitro and oocytes maturing to M-II stage, 1% ITS, 10 ng/mL each of IGF-I, and Insulin and 1 mIU/mL of GH were found to support the best development of sheep PFs. However, the oocytes from PFs cultured in any concentration of TGF-β failed to mature to M-II stage. Similarly, among the combinations studied, IGF-I+GH was found to be the best. In combination with T4 and FSH, IGF-I+GH supported the best development of the PFs. Culture of PFs in micro drops or agar gel supported similarly high development. In vitro fertilization of the oocytes from the cultured sheep PFs resulted in the embryos developing to the morula stage for the first time.  相似文献   

14.
The present investigation attempts to improve the frequency of in vitro maturation of oocytes by culturing small (150–250 μm) and large (>250–400 μm) preantral follicles (PFs) of sheep for 6 days in various combinations/sequences of thyroxin (T4), FSH, LH, transforming growth factor alpha (TGF-), epidermal growth factor (EGF) and heat-treated foetal calf serum (FCS). Bicarbonate-buffered tissue culture medium 199, supplemented with 50 μg ml−1 gentamicin sulphate, served as the control medium. In vitro development was initially assessed by the proportion of PFs exhibiting an increase in size, mean increase in diameter and antrum formation. Nuclear maturation to the metaphase II stage of the oocytes isolated from cultured PFs, after an additional 24-h in vitro maturation, indicated success. A total of 15% of oocytes from small PFs and 55% from large PFs, cultured in T4 + FSH, matured to metaphase II. Culture of PFs in other combinations/sequences of hormones and growth factors, including the control medium, supported a significantly lower proportion of oocytes maturing to metaphase II stage. It is concluded that 6-day in vitro culture of sheep PFs in thyroxin and FSH greatly improves the frequency of oocyte maturation to metaphase II stage.  相似文献   

15.
To assess whether the follicle-stimulating hormone (FSH) subunits observed in patients with gonadotroph adenomas (GA) can cause infertility, the effects of subunits and heterodimeric FSH on the in vitro follicle development were evaluated in mice. The partial forms of FSH in follicle culture did not induce development into pseudoantral follicles, whereas follicles cultured with native FSH developed into pseudoantral follicles and produced mature metaphase II oocyte. Therefore, intact FSH is needed for folliculogenesis, implying that production of FSH with a partial structure in GA may result in infertility.  相似文献   

16.
Caprine preantral follicles within ovarian fragments were exposed to or vitrified in the presence of sucrose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), or various combinations thereof. The fragments were cryopreserved by using either a conventional (CV) or a solid-surface vitrification (SSV) protocol, and the cryoprotectants were removed by equilibrating vitrified ovarian fragments in “warming solution” consisting of minimum essential medium and heat-inactivated fetal calf serum (MEM+) followed by washes in MEM+ with or without sucrose. Histological analysis of follicle integrity showed that the percentages of normal follicles in ovarian fragments vitrified in sucrose mixed with EG and/or DMSO (CV method) or mixed with EG or DMSO (SSV method) followed by washes in MEM+ plus sucrose were similar to those of controls (ovarian fragments fixed without previous vitrification). Unlike for MEM+ (supplemented or unsupplemented by sucrose) and DMSO followed by washes in the absence of sucrose, the percentages of normal follicles found after exposure to cryoprotectant did not significantly differ from that found after vitrification, indicating that follicular degeneration was attributable to a toxic effect of cryoprotectants and not to the vitrification procedure. The viability of preantral follicles after the CV and SSV procedures was investigated by using calcein-AM and the ethidium-homodimer as “live” and “dead” markers, respectively. In both tested vitrification procedures, the highest percentages of viable follicles were observed when a mixture of sucrose and EG (70.3% for CV and 72.4% for SSV) was used. Preantral follicles were also vitrified (either by CV or SSV) in sucrose and EG and then cultured for 24 h, after which their viability was compared with that of cultured fresh and uncultured vitrified follicles. The viability of these follicles was maintained after SSV, but not after CV. Thus, the viability of caprine preantral follicles can be best preserved after SSV in a mixture of sucrose and EG, followed by washes in medium containing sucrose.CAPES/Brazil supported this work. Regiane Rodrigues dos Santos is a recipient of a grant from CAPES/Brazil.  相似文献   

17.
The objective was to develop an efficient protocol for cryopreservation of agouti (Dasyprocta aguti) ovarian tissue. Agouti ovarian fragments were placed, for 10 min, in a solution containing MEM and fetal bovine serum plus 1.5 M dimethyl sulfoxide (DMSO), ethylene glycol (EG) or propanediol (PROH); some of those fragments were subsequently cryopreserved in a programmable freezer. After exposure and/or thawing, all samples were fixed in Carnoy prior to histological analysis. To evaluate ultrastructure, follicles from the control and all cryopreserved treatments were fixed in Karnovsky and processed for transmission electron microscopy. After exposure and freezing, there was a significant decrease in the percentage of morphologically normal preantral follicles in all treatments when compared to the control (92.67 ± 2.79, mean ± SD). However, there were no significant difference when the exposure and freezing procedures were compared using the same cryoprotectant. Moreover, there was no significant difference among cryoprotectants at the time of exposure (DMSO: 64.7 ± 3.8; EG: 70.7 ± 11.2, PROH: 63.3 ± 8.5) or after freezing (DMSO: 60.6 ± 3.6, EG: 64.0 ± 11.9; PROH: 62.0 ± 6.9). However, only follicles frozen with PROH had normal ultrastructure. In conclusion, preantral follicles enclosed in agouti ovarian tissue were successfully cryopreserved using 1.5 M PROH, with satisfactory maintenance of follicle morphology and ultrastructure.  相似文献   

18.
The objective was to evaluate the effects of various concentrations of exogenous FSH during in vitro culture of isolated canine preantral follicles. Preantral secondary follicles (>200 μm) were isolated by microdissection and cultured for 18 d in supplemented α-Minimum Essential Medium (α-MEM). There were three treatment groups: 1) absence of FSH (control medium); 2) FSH100 (fixed concentration of 100 ng/mL throughout the entire culture period); and 3) sequential FSH (FSHSeq - 100, 500, and 1,000 ng/mL were added sequentially). Following culture, all follicles from all treatments were still viable (marked green by calcein-AM). The initial (D0) average follicle diameter for the control, FSH100, and FSHSeq was (mean ± SEM) 298.96 ± 7.02, 286.00 ± 5.87, and 275.39 ± 174 6.55 um, respectively (P > 0.05). Mean diameter of follicles treated with FSHSeq on Day 18 (D18-439.80 ± 14.08 μm) was greater than those of the other treatments (P < 0.05). Daily follicular growth rate (μm/d) of follicles in the FSHSeq treatment (6.47 ± 0.55) was significantly faster than for both the control (3.67 ± 0.32) and FSH100 (4.47 ± 0.38) treatments. Furthermore, FSH100 and FSHSeq treatments had a significantly higher rate of antrum formation than the control group on D12 of culture, whereas after D12, FSH100 had a significantly higher rate of extrusion compared to the control (P < 0.05). In conclusion, the sequential addition of FSH to the culture medium maintained the survival of isolated canine preantral follicles and promoted an increased rate of follicular growth and antrum formation.  相似文献   

19.
The objective was to compare the efficiency of various vitrification techniques and solutions for preserving morphology and viability of preantral caprine follicles enclosed in ovarian tissue. Fragments of ovarian cortex were cryopreserved by conventional vitrification (CV) in French straws, vitrification in macrotubes (MTV), or solid-surface vitrification (SSV). Six solutions containing 6 M ethylene glycol, with or without sucrose (SUC; 0.25 or 0.50 M) and/or 10% fetal calf serum (FCS) were tested (Experiment I). After 1 wk, samples were warmed and preantral follicles were examined histologically. To evaluate follicular viability (Experiment II), ovarian fragments were vitrified with the three techniques listed above, in a solution containing 0.25 M SUC and 10% FCS. After warming, follicles were assessed by the trypan blue dye exclusion test. In Experiment III, preantral follicles enclosed in ovarian tissue were vitrified using the protocol which yielded the highest percentage of viable preantral follicles (SSV with 0.25 M SUC and 10% SFB). After warming, the preantral follicles enclosed in ovarian tissue were cultured in vitro and then, were analyzed by histology and fluorescence microscopy (calcein-AM and ethidium homodimer-1). Every vitrification protocol significantly reduced the percentages of morphologically normal follicles relative to the control (88.0%); however, the addition of 0.25 M SUC and 10% FCS to the vitrification solution improved preservation of follicular morphology (67.4, 67.4, and 72.0% for CV, MTV, and SSV, respectively). Although follicular viability after SSV (80.7%) did not differ from that in fresh (non-vitrified) ovarian tissues (88.0%), after in vitro culture, percentages of viable follicles were significantly reduced (70.0%). Percentages of morphologically normal follicles after in vitro culture of vitrified ovarian tissue were similar (76.0%) to those in ovarian cortex fragments cultured without previous vitrification (83.2%). In conclusion, SSV using a solution containing 0.25 M SUC and 10% FCS, was the most efficient method for vitrifying caprine ovarian tissue.  相似文献   

20.
Bovine preantral follicles within ovarian fragments were exposed and cryopreserved in absence or presence of 1.5 M glycerol (GLY), ethylene glycol (EG), propanediol (PROH) or dimethyl sulfoxide (DMSO), undergoing a previous cooling at 20 °C for 1 h (protocol 1) or at 4 °C for 24 h (protocol 2) in 0.9% saline solution. At the end of each treatment, preantral follicles were classified as non-viable/viable when they were stained/not stained with trypan blue, respectively. To confirm viability staining, ultra-structure of the follicles was evaluated by transmission electronic microscopy (TEM). Data were compared by Chi-square test (P < 0.05). The storage of the ovaries at 20 °C for 1 h (78%) and 4 °C for 24 h (80%) did not reduce significantly the percentage of viable preantral follicles when compared to the control (75%). Similar results were obtained when ovarian fragments, respectively, for protocols 1 and 2, were exposed to MEM (78 and 77%), 1.5 M EG (78 and 71%), as well as frozen in 1.5 M EG (74 and 77%). Percentages of viable follicles in control were similar to those observed after exposure (75%) and freezing (76%) in presence of 1.5 M DMSO only when protocol 1 was used. The increase of the concentration from 1.5 to 3.0 M, for all cryoprotectants, reduced significantly the percentage of viable preantral follicles after freezing. Ultra-structural analysis has confirmed trypan blue results, showing that not only basement membrane, but also organelles, were intact in viable preantral follicles. In conclusion, ovarian tissue cooling at 4 °C for 24 h before cryopreservation (protocol 2) does not affect the viability of bovine preantral follicles when 1.5 M EG is present in the cryopreservation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号