首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydroepiandrosterone (DHEA) 7alpha-hydroxylation in humans takes place in the liver, skin, and brain. These organs are targets for the glucocorticoid hormones where 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisone through its reduction into cortisol. The putative interference of 7alpha-hydroxy-DHEA with the 11beta-HSD1-catalyzed reduction of cortisone into cortisol has been confirmed in preliminary works with human liver tissue preparations of the enzyme demonstrating the transformation of 7alpha-hydroxy-DHEA into 7-oxo-DHEA and 7beta-hydroxy-DHEA. However, the large production of 7beta-hydroxy-DHEA could not be explained satisfactorily. Therefore our objective was to study the role in the metabolism of oxygenated DHEA by recombinant human 11beta-HSD1 expressed in yeast. The 7alpha- and 7beta-hydroxy-DHEA were each oxidized into 7-oxo-DHEA with quite dissimilar K(M) (70 and 9.5 microM, respectively) but at equivalent V(max). In contrast, the 11beta-HSD1-mediated reduction of 7-oxo-DHEA led to the production of both 7alpha- and 7beta-hydroxy-DHEA with equivalent K(M) (1.1 microM) but with a 7beta-hydroxy-DHEA production characterized by a significantly greater V(max). The 7alpha-hydroxy-DHEA produced by the cytochrome CYP7B1 in tissues may exert anti-glucocorticoid effects through interference with the 11beta-HSD1-mediated cortisone reduction.  相似文献   

2.
Kristan K  Krajnc K  Konc J  Gobec S  Stojan J  Rizner TL 《Steroids》2005,70(10):694-703
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100 microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100 microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1 microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone all had IC(50) values between 1 and 5 microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

3.
17β-Hydroxysteroid dehydrogenase type 11 (17βHSD11) is mostly localized on the endoplasmic reticulum (ER) membrane under normal conditions and redistributes to lipid droplets (LDs) when the formation of LDs is induced. In this study, confocal microscopy analyses of the subcellular localization of the mutated 17βHSD11 proteins in cells with or without LDs revealed that both an N-terminal hydrophobic sequence and an adjacent sequence that has a weak homology with the PAT motif are independently necessary and both parts together (28 amino acid residues in total) are sufficient for the dual localization of 17βHSD11. Mutation analyses suggest that the PAT-like motif in 17βHSD11 will not be functionally similar to the canonical PAT motif. Hsp60 was identified as a possibly interacting protein with the PAT-like motif, and biochemical and microscopic analyses suggest that Hsp60 may be partly, but not necessarily involved in recognition of the PAT-like part of the targeting sequence of 17βHSD11.  相似文献   

4.
Different phytoestrogens were tested as inhibitors of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a member of the short-chain dehydrogenase/reductase superfamily. Phytoestrogens inhibited the oxidation of 100microM 17beta-hydroxyestra-4-en-3-one and the reduction of 100microM estra-4-en-3,17-dione, the best substrate pair known. The best inhibitors of oxidation, with IC(50) below 1microM, were flavones hydroxylated at positions 3, 5 and 7: 3-hydroxyflavone, 3,7-dihydroxyflavone, 5,7-dihydroxyflavone (chrysin) and 5-hydroxyflavone, together with 5-methoxyflavone. The best inhibitors of reduction were less potent; 3-hydroxyflavone, 5-methoxyflavone, coumestrol, 3,5,7,4'-tetrahydroxyflavone (kaempferol) and 5-hydroxyflavone, all had IC(50) values between 1 and 5microM. Docking the representative inhibitors chrysin and kaempferol into the active site of 17beta-HSDcl revealed the possible binding mode, in which they are sandwiched between the nicotinamide moiety and Tyr212. The structural features of phytoestrogens, inhibitors of both oxidation and reduction catalyzed by the fungal 17beta-HSD, are similar to the reported structural features of phytoestrogen inhibitors of human 17beta-HSD types 1 and 2.  相似文献   

5.
Bydal P  Auger S  Poirier D 《Steroids》2004,69(5):325-342
The peripheral conversion of steroid precursors into biologically active forms can be a major source of steroid synthesis, and these steroids support the growth of hormone-dependent diseases. The 17beta-hydroxysteroid dehydrogenase (17beta-HSD) enzyme family is involved in the biosynthesis of active steroids and its inhibition constitutes an interesting approach for treating estrogen- and androgen-dependent cancers. We previously found that a compound formed by the introduction of a spiro-gamma-lactone at position 17 of estradiol (E2) produces a significant inhibition of type 2 17beta-HSD. To optimize the inhibitory potency of such compounds, we synthesized a series of estradiol derivatives bearing a lactone on the D-ring and tested their ability to inhibit the type 2 17beta-HSD transformation of 4-androstenedione into testosterone. The results of our structure-activity relationship study determined the importance of the 17beta-orientation of the oxygen atom. Indeed, the 17beta-O-isomer of spiro-gamma-lactone-E2 is a much more potent inhibitor than the 17alpha-O-analog (respectively 85 and 9% of inhibition at 1 microM). The carbonyl function is essential since the percentage of inhibition shifts from 85 to 30%, 15, or 3%, when the carbonyl group is transformed into a hydroxyl, a methoxy or a methylene (cycloether) group, respectively. Our results lead us to realize the importance of the spirolactone versus the C17beta-O/C16beta lactone (respectively 32 and 2% of inhibition at 0.1 microM, for the same size of lactone ring). The optimal size for the spirolactone was also established to be six members. All the types of substituents (methyl, dimethyl, allyl, propyl, and methoxycarbonyl) that we added on the spiro-delta-lactone moiety decreased the inhibitory activity, suggesting steric restrictions for the space that can be occupied in proximity of the spiro-delta-lactone functionality. 17-(Spiro-delta-lactone)-E2, compound 6, was thus the most potent inhibitor of type 2 17beta-HSD with a K(i) value of 29 +/- 5 nM. This compound reversibly inhibits type 2 17beta-HSD in a non-competitive manner.  相似文献   

6.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.  相似文献   

7.
8.
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) catalyses the interconversion of active corticosterone and inert 11-dehydrocorticosterone. Short-term glucocorticoid excess upregulates 11β-HSD-1 in liver and hippocampus leading to suggestions that 11β-HSD-1 ameliorates the deleterious effects of glucocorticoid excess by its 11β-dehydrogenase activity. However the predominant activity of 11β-HSD-1 in vivo is 11β-reduction, thus generating active glucocorticoid. We have re-examined the time-course of glucocorticoid regulation of 11β-HSD-1 in the liver, hippocampus and kidney of adult male rats in vivo.

Sham operation markedly reduced 11β-HSD-1 mRNA expression in all tissues, and reduced 11β-HSD bioactivity in liver and hippocampus when compared to untouched controls. Adrenalectomy reduced 11β-HSD-1 expression in all tissues in the short-term (7 days), followed by subsequent recovery of enzyme activity by 21 days in liver and hippocampus. Dexamethasone replacement of adrenalectomised rats attenuated the initial decrease in hepatic 11β-HSD-1 activity, but by 21 days dexamethasone reduced activity compared to control levels.

Thus glucocorticoids regulate 11β-HSD-1 in a complex tissue- and temporal-specific manner. This pattern of regulation suggests glucocorticoids repress 11β-HSD-1 at least in the liver, a pattern of regulation more consistent with the evidence that 11β-HSD-1 is an 11β-reductase in vivo. Operational stress per se down-regulates 11β-HSD-1 which has implications for interpretation and design of in vivo studies of 11β-HSD-1.  相似文献   


9.
10.
BACKGROUND: 17beta-Hydroxysteroid dehydrogenase (type V; HSD17B5) is a key enzyme involved in testosterone production in females. A single nucleotide polymorphism (SNP) in the promoter region of its gene was recently found to be associated with polycystic ovary syndrome (PCOS) and its related hyperandrogenaemia. Precocious pubarche (PP) is a clinical entity pointing to adrenal androgen excess from mid-childhood onward and is associated with ovarian androgen excess from puberty onward. It is therefore a strong risk factor for PCOS. METHODS: To investigate associations between this promoter SNP along with three exonic SNPs (one non-synonymous and two synonymous) from the same gene, and PP, a case-control study was performed in 190 girls with PP (84 of which were also tested for functional ovarian hyperandrogenism) from Barcelona, Spain and 71 healthy controls. Clinical features and hormone concentrations relevant to hyperandrogenism were compared by HSD17B5 genotype and haplotype. RESULTS: Neither HSD17B5 genotypes nor haplotype were associated with PP, or subsequent androgen excess in girls from Barcelona (all P>0.05). CONCLUSIONS: HSD17B5 SNPs predicted to have functional effects do not appear to be a risk factor for PP in girls from Barcelona, despite these girls being at high risk of developing androgen excess in adulthood.  相似文献   

11.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC50 values in the low micromolar range.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
In a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S. D'Andrea, M. Davanture, L. Negroni, M. Zivy, T. Chardot, Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiol. Biochem. 42 (2004) 501-509]. Using specific antibodies and proteomic techniques, we presently confirm the existence of this protein, which is a member of the short-chain steroid dehydrogenase reductase superfamily. We have measured its activity toward various steroids (cholesterol, dehydroepiandrosterone, cortisol, corticosterone, estradiol, estrone) and NAD(P)(H), either within purified OBs or as a purified bacterially expressed chimera. Both enzymatic systems (OBs purified from A. thaliana seeds as well as the chimeric enzyme) exhibited hydroxysteroid dehydrogenase (HSD) activity toward estradiol (17beta-hydroxysteroid) with NAD+ or NADP+, NADP+ being the preferred cofactor. Low levels of activity were observed with cortisol or corticosterone (11beta-hydroxysteroids), but neither cholesterol nor DHEA (3beta-hydroxysteroids) were substrates, whatever the cofactor used. Similar activity profiles were found for both enzyme sources. Purified OBs were found to be also able to catalyze estrone reduction (17beta-ketosteroid reductase activity) with NADPH. The enzyme occurring in A. thaliana OBs can be classified as a NADP+-dependent 11beta-,17beta-hydroxysteroid dehydrogenase/17beta-ketosteroid reductase. This enzyme probably corresponds to AtHSD1, which is encoded by At5g50600. However, its physiological role and substrates still remain to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号