首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
2型糖尿病(type 2 diabetes mellitus, T2DM)是一种在全球范围内广泛存在的代谢性疾病,不及时治疗可能会引发众多危及生命的并发症。肝脏代谢在糖尿病发生发展的过程中扮演着至关重要的角色。目前已有报道中药知母用于缓解胰岛素抵抗及糖尿病,但其能否缓解糖尿病中肝脏代谢的异常仍有待深入研究。因此,提取了高脂饮食和化学药物链脲佐菌素(streptozotocin, STZ)诱导的2型糖尿病大鼠模型、知母提取物处理的2型糖尿病大鼠模型、高脂饮食大鼠模型以及正常饮食大鼠对照组的肝脏蛋白,通过基于质谱的定量蛋白质组学串联质量标签(tandem mass tag, TMT)标记技术获得定量蛋白质组数据。利用生物信息学软件对各组数据进行层次聚类分析及主成分分析,并以P<0.05,差异倍数(fold change)>1.5作为阈值标准进行火山图分析,发现知母提取物治疗组相较未治疗组与正常对照组更接近,表明肝脏组织定量蛋白质组数据能够反映知母提取物对2型糖尿病大鼠模型的治疗效果。筛选获得了表达水平与知母提取物治疗密切相关的关键蛋白簇。利用在线网站分析蛋白簇的GO功能与KEG...  相似文献   

2.
脂联素作为脂肪细胞产生和分泌的一种细胞因子,在细胞和动物的基础实验中,脂联素已被证实具有胰岛素增敏、抗炎、抗氧化、抗动脉粥样硬化和抗凋亡等作用。然而在大规模人群的流行病学和基因组学的研究中,脂联素的这些有益作用却不能够完全再现。该文将对循环中脂联素水平与2型糖尿病、心血管疾病矛盾性关系进行归纳与总结,并对其矛盾性关系的原因给予阐述及分析,旨在为今后进一步研究脂联素在2型糖尿病及心血管疾病中的作用提供科学依据。  相似文献   

3.
脂联素是脂肪组织分泌一种脂肪因子,与胰岛素抵抗和肥胖密切相关,在2型糖尿病和肥胖人群中,脂联素的血浆浓度下降。脂联素信号通路通过激活AMPK和PPAR-α与胰岛素信号通路相联系。研究表明,上调脂联素信号通路的活性可以有效缓解胰岛素抵抗。因此,脂联素信号转导通路机制是以胰岛素抵抗为病理生理基础的2型糖尿病的研究热点。本文简要介绍脂联素的生物学特征、脂联素的信号通路机制、脂联素与胰岛素抵抗的现有研究成果及临床价值。  相似文献   

4.
脂联素是一种重要的脂肪细胞因子,而球状脂联素(脂联素的球状结构域,gapM1)有望开发为一种新药,用来治疗Ⅱ型糖尿病。本研究分别通过摇瓶和发酵罐培养,用毕赤酵母工程菌进行重组人gapM1的表达,并用凝胶过滤和阴离子交换进行蛋白的纯化。然后,用高脂饲料和低剂量STZ(链脲佐菌素)相结合的方法建立Ⅱ型糖尿病大鼠模型,鉴定gapM1的生物学活性。SDS-PAGE结果表明gapM1在毕赤酵母中得到了高效表达,Western blotting结果显示表达的蛋白为gapM1,并从10 L发酵上清中纯化得到200 mg纯度为96%的gapM1。而制备的重组人gapM1能显著降低Ⅱ型糖尿病大鼠的血糖(34.2%)、血甘油三酯(79.6%)和血总胆固醇(62.1%)水平。因此,重组人gapM1在毕赤酵母中得到了成功表达,并且通过动物模型证明其有很好的降血糖和降血脂活性。  相似文献   

5.
脂联素是一种由脂肪细胞分泌的蛋白,可通过激活AMPK和PPAR-α等信号分子影响糖脂代谢,并具有胰岛素增敏作用。其生物学效应是由脂联素受体(adiponectin receptor,AdipoR)1和2介导的。研究发现,ob/ob和db/db小鼠及有2型糖尿病家族史的患者骨骼肌中AdipoR1的表达水平下降,又有研究表明两种受体介导了不同的生物学效应,提示脂联素的生物学作用受其受体表达水平及两种受体比例关系的影响。  相似文献   

6.
细胞内脂滴是一种代谢活跃的细胞器,脂滴表面蛋白在脂滴的代谢调节中起到了重要作用。ADRP是一种重要的脂滴表面蛋白,在机体组织和细胞内广泛表达。脂肪肝、动脉粥样硬化、糖尿病等均伴随脂质的异常蓄积,近年来的研究表明ADRP参与这些疾病的发生发展。本文就ADRP在各组织和器官正常的生理功能以及对疾病状态的调控加以综述。  相似文献   

7.
肥胖及2型糖尿病是代谢紊乱相关的慢性低度系统炎症状态。半乳糖苷凝集素-3(galectin-3)是一种β-半乳糖苷结合蛋白,在炎症、信号转导、细胞增殖与分化等过程中发挥重要作用。新近的研究表明,半乳糖苷凝集素-3在患肥胖和2型糖尿病的人及鼠类体内高表达,对鼠类体脂的沉积、脂肪细胞分化、血糖浓度、胰岛素敏感性、葡萄糖耐受性和系统炎症等具有重要影响。本文综述了半乳糖苷凝集素-3的结构、分布及其对肥胖和2型糖尿病的调控作用与分子机制,以期为研发针对半乳糖苷凝集素-3靶点的新药提供重要思路和参考。  相似文献   

8.
肥胖及2型糖尿病是代谢紊乱相关的慢性低度系统炎症状态。半乳糖苷凝集素-3(galectin-3)是一种β-半乳糖苷结合蛋白,在炎症、信号转导、细胞增殖与分化等过程中发挥重要作用。新近的研究表明,半乳糖苷凝集素-3在患肥胖和2型糖尿病的人及鼠类体内高表达,对鼠类体脂的沉积、脂肪细胞分化、血糖浓度、胰岛素敏感性、葡萄糖耐受性和系统炎症等具有重要影响。本文综述了半乳糖苷凝集素-3的结构、分布及其对肥胖和2型糖尿病的调控作用与分子机制,以期为研发针对半乳糖苷凝集素-3靶点的新药提供重要思路和参考。  相似文献   

9.
通过高糖高脂饲料联合小剂量链脲佐菌素和去卵巢手术制备2型糖尿病合并骨质疏松大鼠模型,探讨2型糖尿病合并骨质疏松大鼠肝组织胰岛素信号通路相关因子的表达及意义。结果表明:随着时间延长,2型糖尿病合并骨质疏松组(DOVX组)肝组织IGF-1、IRS-1较其他组mRNA及蛋白表达减少,单纯去卵巢组(NOVX组)IGF-1、IRS-1 mRNA及蛋白表达较假手术对照组(NS组)降低;糖尿病组(DS组)IRS-2较NS组mRNA及蛋白表达下降,但NOVX组与NS组IRS-2 mRNA及蛋白表达比较无明显差别。以上结果表明,2型糖尿病合并骨质疏松的发生可能与肝脏胰岛素信号通路受抑制有关。  相似文献   

10.
目的 探讨葛根素对糖尿病大鼠肾小球结构、功能及肾组织基质金属蛋白酶3(MMP-3)、组织抑制剂1(TIMP-1)表达的影响。方法 腹腔注射链脲佐菌素诱发大鼠糖尿病模型,每日ip葛根素注射液,共16周。采用原位杂交法检测肾小球TIMP-1 mRNA表达,流式细胞术和免疫组化检测肾皮质MMP-3、TIMP-1及Ⅳ型胶原、层粘连蛋白表达。结果 糖尿病组较对照组肾小球TIMP-l mRNA及蛋白表达增加,MMP-3、TIMP-1及Ⅳ型胶原、层粘连蛋白表达亦增加;葛根素用药组较糖尿病组TIMP-1 mRNA、蛋白及MMP-3、Ⅳ型胶原、层粘连蛋白表达减少。结论 葛根素对糖尿病大鼠肾功能、形态的影响具有保护作用,除降低血糖外,调节肾小球MMP-3、TIMP-1表达式从而减轻肾小球细胞外基质沉积也可能是其作用途径之一。  相似文献   

11.
Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.  相似文献   

12.
Adiponectin, an adipocyte-derived protein   总被引:6,自引:0,他引:6  
Adipose tissue is a hormonally active tissue, producing adipocytokines which may influence activity of other tissues. Adiponectin, abundantly present in the plasma increases insulin sensitivity by stimulating fatty acid oxidation, decreases plasma triglycerides and improves glucose metabolism. Adiponectin levels are inversely related to the degree of adiposity. Anorexia nervosa and type 1 diabetes are associated with increased plasma adiponectin levels and higher insulin sensitivity. Decreased plasma adiponectin levels were reported in insulin-resistant states, such as obesity and type 2 diabetes and in patients with coronary artery disease. Activity of adiponectin is associated with leptin, resistin and with steroid and thyroid hormones, glucocorticoids, NO and others. Adiponectin suppresses expression of extracellular matrix adhesive proteins in endothelial cells and atherosclerosis potentiating cytokines. Anti-atherogenic and anti-inflammatory properties of adiponectin and the ability to stimulate insulin sensitivity have made adiponectin an important object for physiological and pathophysiological studies with the aim of potential therapeutic applications.  相似文献   

13.
Adiponectin is an abundantly expressed adipokine in adipose tissue and has direct insulin sensitizing activity. A decrease in the circulating levels of adiponectin by interactions between genetic factors and environmental factors causing obesity has been shown to contribute to the development of insulin resistance, type 2 diabetes, metabolic syndrome and atherosclerosis. In addition to its insulin sensitizing actions, adiponectin has central actions in the regulation of energy homeostasis. Adiponectin enhances AMP-activated protein kinase activity in the arcuate hypothalamus via its receptor AdipoR1 to stimulate food intake and decreases energy expenditure. We propose a hypothesis on the physiological role of adiponectin: a starvation gene in the course of evolution by promoting fat storage on facing the loss of adiposity.  相似文献   

14.
15.
Expression of adiponectin receptors in pancreatic beta cells   总被引:28,自引:0,他引:28  
Pancreatic beta cell dysfunction is an early and crucial pathogenic factor in the development of type 2 diabetes. Free fatty acids (FFA) and adipokines released from adipose tissues lead to both the development of insulin resistance and beta cell dysfunction. Adiponectin is a novel adipokine with antidiabetic properties. Its circulating concentrations are reduced in subjects with increased visceral adiposity, insulin resistance, or type 2 diabetes. Very recently, the cloning of two adiponectin receptors AdipoR1 and AdipoR2 was reported. AdipoR1 is abundantly expressed in muscle, while AdipoR2 is predominantly expressed in liver. Here we report the marked expression of mRNAs for the adiponectin receptors AdipoR1 and AdipoR2 in human and rat pancreatic beta cells, at levels similar to liver and greater than muscle. Adiponectin receptor expression is increased by beta cell exposure to the unsaturated FFA oleate, and treatment of insulin-producing cells with globular adiponectin induces lipoprotein lipase expression. Regulated adiponectin receptor expression on pancreatic beta cells might be a novel mechanism modulating the effects of circulating adiponectin.  相似文献   

16.
An aberrant proliferation of mesangial cells (MCs) is one of the more important features of diabetic nephropathy (DN). Adiponectin, an adipocyte-derived hormone, has been associated with type 2 diabetes, a known cause of DN. Recent studies have suggested that adiponectin has a protective effect on the kidney. To elucidate the potential protective mechanism of adiponectin on kidney, we investigated the effects of adiponectin on platelet-derived growth factor (PDGF)-induced cell proliferation and intracellular signaling pathways in cultured Human MCs (HMCs). PDGF-induced HMC proliferation was significantly inhibited by the co-treatment of adiponectin. Adiponectin alone had no effect on HMC proliferation. The mammalian target of rapamycin (mTOR) and 40?S ribosomal S6 kinase 1 (S6K1) were activated by PDGF stimulation in HMCs. PDGF-induced mTOR and S6K1 phosphorylations were significantly attenuated by the co-treatment of adiponectin in HMC. Adiponectin alone had no effects on PDGF-receptor autophosphorylation by PDGF. We also confirmed that the inhibitory effect of adiponectin on PDGF-induced HMC proliferation was significantly suppressed by compound C, an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor. From these findings, it is implied that adiponectin could attenuate renal dysfunction associated with MC disorders through AMPK-mTOR signal pathway.  相似文献   

17.
The aim of this review is to present the up-to-date data about adiponectin and it's role in pathogenesis of cardiovascular disease. Adiponectin is a hormone derived from adipose tissue which regulates energy metabolism, and plays an important role in the pathogenesis of insulin resistance. Serum levels of adiponectin are reduced in obesity, hypertension, metabolic syndrome and type 2 diabetes. Moreover, plasma adiponectin concentration is inversely associated with LDL-cholesterol, TG and is positively related to HDL-cholesterol. Recent studies have indicated that adiponectin has antiinflammatory and antiatherogenic properties. Review of the data confirmed the hypothesis that adiponectin plays an important role in pathogenesis of cardiovascular disease.  相似文献   

18.
Adiponectin, an adipokine secreted by the white adipose tissue, plays an important role in regulating glucose and lipid metabolism and controlling energy homeostasis in insulin-sensitive tissues. A decrease in the circulating level of adiponectin has been linked to insulin resistance, type 2 diabetes, atherosclerosis, and metabolic syndrome. Adiponectin exerts its effects through two membrane receptors, AdipoR1 and AdipoR2. APPL1 is the first identified protein that interacts directly with adiponectin receptors. APPL1 is an adaptor protein with multiple functional domains, the Bin1/amphiphysin/rvs167, pleckstrin homology, and phosphotyrosine binding domains. The PTB domain of APPL1 interacts directly with the intracellular region of adiponectin receptors. Through this interaction, APPL1 mediates adiponectin signaling and its effects on metabolism. APPL1 also functions in insulin-signaling pathway and is an important mediator of adiponectin-dependent insulin sensitization in skeletal muscle. Adiponectin signaling through APPL1 is necessary to exert its anti-inflammatory and cytoprotective effects on endothelial cells. APPL1 also acts as a mediator of other signaling pathways by interacting directly with membrane receptors or signaling proteins, thereby playing critical roles in cell proliferation, apoptosis, cell survival, endosomal trafficking, and chromatin remodeling. This review focuses mainly on our current understanding of adiponectin signaling in various tissues, the role of APPL1 in mediating adiponectin signaling, and also its role in the cross-talk between adiponectin/insulin-signaling pathways.  相似文献   

19.
Adipose tissue, an endocrine organ, secretes bioactive factors including adiponectin. Adiponectin is a protein hormone that enhances insulin sensitivity through increased fatty acid oxidation and inhibition of hepatic glucose production. We assessed the association of the adiponectin promoter region polymorphisms −11391 G/A and −11377 C/G with susceptibility to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus in the population of west Iran. Also, we investigated the effect of adiponectin level and lipid profile on T1DM and T2DM development. In this case-control study, we recruited 189 patients with diabetes (100 T2DM and 89 T1DM) and 161 sex and age-matched unrelated healthy controls. Adiponectin mutations were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and the protein level was measured by the enzyme-linked immunosorbent assay. Other biochemical parameters were determined by routine laboratory methods. The G allele of adiponectin gene at −11377 position (C/G) significantly increased the risk of T1DM. With respect to genotype models, codominant (2.97 times), dominant (3.6-fold), and over-codominant (2.9-fold) patients with T1DM who carried −11377 C > G single-nucleotide polymorphisms were significantly susceptible to the development of the disease. A significantly higher level of adiponectin in T1DM was oberved compared with the control group. In contrast, patients with T2DM had lower adiponectin levels compared with healthy controls. The genotype distributions of −11391 G/A polymorphisms were the same for patients with diabetes and control groups. The presence of G allele at −11377 C/G adiponectin gene significantly increased serum adiponectin level and may be a risk factor for T1DM susceptibility among the western Iranian population.  相似文献   

20.
Adiponectin is a 30kDa protein exclusively produced and secreted from adipocytes and as a cytokine has been found to link obesity, insulin resistance, and type 2 diabetes. Production of biologically active adiponectin in large scale is desirable for pharmaceutical applications. Mouse adiponectin cDNA was used for developing transgenic sweet potato plants via Agrobacterium-mediated transformation. The presence of the transgene was verified by PCR and DNA gel blot analysis. Further investigated were five independent transgenic lines, all of which expressed high levels of adiponectin mRNA. Immuno blot analysis with a mouse adiponectin antiserum revealed that, in addition to a 29 kDa-protein which co-migrates with the adiponectin protein produced in Escherichia coli cells, a 31 kDa-protein was produced, indicative of a post-translational modification of the protein. The transgenic plants did not show obvious differences in growth rate and morphology in response to adiponectin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号