首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-primed discontinuous DNA synthesis was studied in an in vitro system consisting of washed nuclei from synchronized S-phase HeLa cells. A new technique proved useful for the purification of short nascent fragments of DNA (Okazaki fragments). Mercurated dCTP was substituted for dCTP in the DNA synthesis reaction. Short nascent pieces (4–6 S) of mercurated DNA were found to bind preferentially to sulfhydryl-agarose, and could be eluted with mercaptoethanol. The isolated fragments were assayed for the presence of covalently linked RNA by the spleen exonuclease method described by Kurosawa et al. (Kurosawa, Y., Ogawa, T., Hirose, S., Okazaki, T. and Okazaki, R. (1975) J. Mol. Biol. 96, 653–664). Following a 30 s incubation with [3H]TTP in the absence of added ribonucleotides, approximately 20% of the nascent strands synthesized in washed nuclear preparations had RNA attached. These RNA primers either preexisted in the nuclei or were formed from endogenous ribonucleotides. The 5′ ends of the primers appeared to be largely in a phosphorylated state. In the absence of added ribonucleotides, these RNA-DNA linkages disappeared within 2 min, whereas if ribonucleotides were added, the number of RNA primers increased to 40% and remained at this level for greater than 2 min. To obtain maximal levels of RNA primer, the addition of all three of the ribonucleotides, rCTP, rGTP and rUTP (0.1 mM), as well as high levels of rATP (5 mM) was required. Addition of ribonucleotides also markedly enhanced the amount of nascent DNA fragments synthesized. However, in the absence of added ribonucleotides, after RNA primers had disappeared, nascent DNA fragments were still initiated at a significant rate. These results suggest that RNA primers play an important role in the initiation of Okazaki fragments but that synthesis can also be initiated by alternative mechanisms. An important role for ATP in RNA primer synthesis is suggested.  相似文献   

2.
In an in vitro RNA synthesizing system, a single size of A-start RNA and three different sizes of G-start RNA are predominantly transcribed on the doubly closed replicative form (RFI) DNA of phage fd. When the RFI DNA was cleaved into three fragments (HinH-A, HinH-B and HinH-C) by a restriction endonuclease from Haemophilus influenzae H-I, the A-start RNA was predominantly initiated on HinH-B and the three G-start RNAs on HinH-A. RFI DNA was further cleaved into smaller pieces by two other restriction endonucleases from H. aphirophilus and H. gallinarum. Upon mixing the digests with RNA polymerase, two specific fragments derived from HinH-A were bound to the polymerase with GTP present. G-start RNA was efficiently initiated on the fragments isolated by this procedure. On the basis of these observations and estimates of the size of RNA formed on each fragment, the initiation sites for major RNA species were localized on the cleavage map of the phage fd genome previously constructed.  相似文献   

3.
RNA Polymerase Binding Sites of Phage fd Replicative Form DNA   总被引:3,自引:0,他引:3  
  相似文献   

4.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

5.
Several techniques to enzymatically construct a short hairpin RNA (shRNA) expression library have been reported as tools for comprehensive genetic analyses by RNA interference. Our technique constructs an shRNA expression library from 25- to 35-bp DNA fragments by fragmenting given double-stranded DNA (dsDNA). We compared the following two procedures to efficiently prepare such small DNA fragments: one is the cleavage of dsDNA with deoxyribonuclease I (DNase I) in the presence of Mn2+ followed by blunting with T4 DNA polymerase, and the other is the introduction of nicks with DNase I in the presence of Mg2+ followed by blunting with the Klenow fragment. Consequently, the latter yielded the DNA fragments more efficiently. However, these DNA fragments were contaminated with fused DNA fragments that had originated from two regions of original dsDNA. Therefore, we used single-strand-specific exonucleases and succeeded in suppressing the production of such fused DNA fragments. Our technique allows the efficient conversion of given dsDNA to small DNA fragments.  相似文献   

6.
A method, called “bidirectional transfer”, has been described for the transfer of DNA and RNA from agarose or polyacrylamide gels onto diazobenzyloxymethyl (DBM)-paper or nitrocellulose filters. The gels were sandwiched between either two nitrocellulose filters or two diazobenzyloxymethyl-papers. Next, the nucleic acids were allowed to diffuse out of the gels onto the filters. In this way, duplicate blots were obtained from a single gel. The bidirectional transfer of DNA or RNA from 0.5 to 1% agarose gels was complete and nearly quantitative after 1 h of transfer. DNA fragments from 5% polyacrylamide gels were efficiently blotted after 36 h onto nitrocellulose filters using bidirectional transfer. The fragments were transferred with good resolution and were shown to be efficient substrates for homologous [32P]DNA probes.  相似文献   

7.
8.
9.
10.
Previous reports from this laboratory (Honess and Roizman, 1974) have operationally defined alpha polypeptides as the viral proteins that are synthesized first in HEp-2 cells treated with cycloheximide from the time of infection with herpes simplex virus type 1 until the withdrawal of the drug 12 to 15 h after infection. It has also been shown that the viral RNA (designated alpha RNA) that accumulates in the cytoplasm during cycloheximide treatment and on polyribosomes immediately upon withdrawal of the drug is homologous to 10 to 12% of viral DNA, whereas the viral RNA accumulating in the cytoplasm of untreated cells at 8 to 14 h after infection is homologous to 43% of viral DNA (Kozak and Roizman, 1974). In the present study, alpha RNA and cytoplasmic RNA extracted from untreated cells 8 h after infection were each hybridized in liquid to in vitro labeled restriction endonuclease fragments generated by cleavage of herpes simplex virus type 1 DNA with Hsu I, with Bgl II, and with both enzymes simultaneously. The data show that only a subset of the fragments hybridized to alpha RNA, and these are scattered within both the L and S components of the DNA. There are at least five noncontiguous regions in the DNA homologous to alpha RNA; two of these are located partially within the reiterated sequences in the S component. All fragments tested hybridized more extensively with 8-h cytoplasmic RNA than with alpha RNA. Four adjacent fragments, corresponding to 30% of the DNA and mapping within the L component, hybridized exclusively with the cytoplasmic RNA extracted from cells 8 h after infection.  相似文献   

11.
12.
13.
Unique fragments of adenovirus type 2 DNA generated by cleavage with endonuclease R-Eco RI or endonuclease R-Hsu I (Hin dIII) were used to map cytoplasmic viral RNAs transcribed early in productive infection. Radioactive early viral RNA was first fractionated by polyacrylamide gel electrophoresis. Eluted viral RNAs were then tested for hybrid formation with DNA fragments. The Eco RI DNA fragment (Eco RI-A) which contains the left-hand 58% of the genome hybridized 13S and 11S RNAs. More detailed mapping of these RNAs was achieved by hybridization to the seven Hsu I fragments of Eco RI-A. The early RNA annealed only to Hsu I-G and C, two fragments which comprise the extreme left-hand 17% of the genome. Viral RNA migrating as 13S and 11S annealed to Hsu I-G, and 13S RNA annealed to Hsu I-C. A 13S RNA is transcribed from Eco RI-A late in infection (18 h). Hybridization-inhibition studies with Eco RI-A DNA, early cytoplasmic RNA, and 3H-labeled 13S late RNA demonstrated that this RNA synthesized at late times is an early RNA species which continues to be synthesized in large amounts at 18 h. This 13S RNA synthesized at 18 h hybridized to Hsu I-C but not to Hsu I-G DNA. These results establish that the 13S RNAs transcribed from Hsu I-G and C at early times must be different species.  相似文献   

14.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

15.
16.
In discontinuous polyoma DNA replication, the synthesis of Okazaki fragments is primed by RNA. During viral DNA synthesis in nuclei isolated from infected cells, 40% of the nascent short DNA fragments had the polarity of the leading strand which, in theory, could have been synthesized by a continuous mechanism. To rule out that the leading strand fragments were generated by degradation of nascent DNA, they were further characterized. DNA fragments from a segment of the genome which replication forks pass in only one direction were strand separated. The sizes of the fragments from both strands were similar, suggesting that one strand was not specifically degraded. Most important, however, the majority of the Okazaki fragments of both strands were linked to RNA at their 5' ends. For identification, the RNA was labeled at the 5' ends by [beta-32P]GTP, internally by [3H]CTP, [3H]GTP, and [3H]UTP, or at the 3' ends by 32P transfer from adjacent [32P]dTMP residues. All three kinds of labeling indicated that an equal proportion of DNA fragments from the two strands was linked to RNA primers.  相似文献   

17.
18.
19.
20.
A rapid, convenient and economical method for the hybridization of electrophoretically resolved RNA to DNA restriction fragments immobilized on nitrocellulose filters is described. DNA was digested, electrophoresed on agarose gels in a wide band and transferred to a nitrocellulose filter. The filter was then placed on the surface of a second gel containing radioactively labeled RNA electrophoresed under denaturing conditions in a similar way. The filter and gel were oriented so that the DNA and RNA bands were perpendicular to one another and the RNA was transferred from the gel through the filter under conditions which promote RNA-DNA hybridization. Following washing, the filter was autoradiographed. RNA-DNA sequence relationships could be conveniently determined from the spots produced at regions of intersection of homologous nucleic acids. The two dimensional array formed in this procedure fascilitates the rapid ordering of DNA restriction fragments. An example of its use for this purpose is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号