首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic effects of plant sterols and stanols (Review)   总被引:11,自引:0,他引:11  
High serum LDL cholesterol concentration is a major risk factor for cardiovascular complications. This risk can be lowered by diet. In this respect foods containing plant sterol or stanol esters can be useful for mildly- and hypercholesteraemic subjects. Plant sterols and stanols, which are structurally related to cholesterol, decrease the incorporation of dietary and biliary cholesterol into micelles. This lowers cholesterol absorption. Furthermore, these components increase ABC-transporter expression, which may also contribute to the decreased cholesterol absorption. Consequently, cholesterol synthesis and LDL receptor activity increase, which ultimately leads to decreased serum LDL cholesterol concentrations. Animal studies have further shown that these dietary components may also lower atherosclerotic lesion development. Plant sterols and stanols also lower plasma lipid-standardized concentrations of the hydrocarbon carotenoids, but not those of the oxygenated cartenoids and tocopherols. Also, vitamin A and D concentrations are not affected. Although absorption of plant sterols and stanols (0.02-3.5%) is low compared to cholesterol (35-70%), small amounts are found in the circulation and may influence other physiological functions. However, there is no consistent evidence that plant sterols or stanols can change the risk of colon or prostate cancer, or immune status. In conclusion, plant sterols and stanols effectively reduce serum LDL cholesterol and atherosclerotic risk. In addition potential effects of plant sterols and stanols on other metabolic processes remain to be elucidated.  相似文献   

2.
PURPOSE OF REVIEW: To discuss new evidence-based dietary recommendations founded on an inclusive food strategy and to address the challenges that are posed by integrating a growing list of heart healthy foods into the diet without increasing energy intake beyond that required to achieve a healthy body weight. RECENT FINDINGS: New food-based dietary recommendations issued by the American Heart Association with the objective of reducing risk for cardiovascular disease (CVD) promote an inclusionary approach. The American Heart Association recommends a variety of foods to target four major goals: achieve a healthy overall diet, achieve a healthy weight, promote desirable lipid levels, and promote desirable blood pressure. Specific foods recommended include fruits and vegetables, grain products (including whole grains), fish, lean meat and poultry, fat-free or low-fat dairy products, and legumes. In addition, the new National Cholesterol Education Program Adult Treatment Panel III recommends reductions in saturated fat and cholesterol and therapeutic dietary options for enhancing LDL-cholesterol lowering, with inclusion of plant stanols/sterols (2 g/day) and increased viscous (soluble) fiber (10-25 g/day). In parallel with the evolution of new dietary recommendations is the expanding list of specific foods that have cardioprotective effects. Additional foods on this list are nuts, soy, legumes, alcohol, tea, and garlic. SUMMARY: It will be challenging to include all foods that reduce CVD risk in the diet and still maintain energy control. Strategies are needed that facilitate developing heart healthy dietary patterns that maximally reduce CVD risk.  相似文献   

3.
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.  相似文献   

4.
Cardiovascular disease is a major health problem in developed countries although its incidence is relatively lower in Mediterranean countries which is partly ascribed to dietary habits. Epidemiologic evidence shows that elevated serum cholesterol, specifically low-density lipoprotein cholesterol (c-LDL), increases cardiovascular disease. Phytosterols are bioactive compounds, found in all vegetable foods, which inhibit intestinal cholesterol absorption and, therefore, have a serum cholesterollowering effect. Intestinal cholesterol absorption is a multistep process where, plant sterols and stanols may act:a) attenuating the NPC1L1 gene expression, which may result in a lower cholesterol uptake from the lumen;b) lowering the cholesterol esterification rate by the ACAT2 (acyl-CoA cholesterol acyltransferase) and, consequently, the amount of cholesterol secreted via the chylomicrons andc) upregulating the expression of ABC-transporters ABCG5 and ABCG8 in intestinal cells, which may result in an increased excretion of cholesterol by the enterocyte back in the lumen. Many clinical trials proved that commercial products enriched with phytosterols reduce cholesterol levels. Likewise, recent studies show that phytosterols present in natural food matrices are also effective and could be an important component of cardioprotective dietary patterns such as the Mediterranean diet.  相似文献   

5.
In one normal subject, J.S., fed several formula diets in a sterol balance study, only 25-58% of the ingested plant sterols were recovered from the stool. The dietary plant sterols were completely recovered from the stools of five other men. Plant sterol recovery was complete in all men when a diet of mixed general foods was consumed. Since the chief differences in composition of the formula and the diet of mixed general foods were related to the different contents of cellulose and lactose, these components were added to the formula diet of J.S., and plant sterol balance studies were then carried out. The addition of fresh celery or pulverized cellulose to the formula diet partially corrected the usual fecal loss of plant sterols (80% being recovered). Lactose in the formula was only slightly corrective. However, the addition of both cellulose and lactose led to complete recovery of the ingested plant sterols in the feces. Bacterial cultures of stools were incubated with added cholesterol-4-(14)C, and a linear relationship between losses of sterol during balance studies and in vitro incubations was observed; that is, a considerable loss of the labeled cholesterol from cultures after the formula diet, but not after the diet of mixed general foods. This in vitro loss was also corrected by the addition of cellulose and lactose to the formula diet. The loss of the sterol nucleus in the intestinal tract may occur at times because of the lack of certain dietary constituents. It is hypothesized that the metabolism of intestinal tract bacteria is altered when certain constituents are not present in the diet, and that these bacteria may then degrade the sterol nucleus.  相似文献   

6.
Both plant sterols and lecithin are used as dietary supplements for lowering blood cholesterol in Western countries. This study evaluated the possibility of an additive effect of these ingredients on the regulation of lipid concentrations and cholesterol metabolism. Male Sprague-Dawley rats were randomly divided into three groups, and fed one of the following diets for 5 weeks; high cholesterol diet (HCD), phytosterol mixture-supplemented diet (PD, HCD+0.25% phytosterols), or phytosterol mixture and lecithin-supplemented diet (PLD, PD+0.15% lecithin). Feeding the PD for 5 weeks resulted in a 34% and 41% decrease in plasma total- and VLDL+LDL-cholesterol levels, respectively, and a 23% decrease in hepatic cholesterol content compared to those for the HCD rats (p < 0.05). These cholesterol-lowering properties of the phytosterol mixture were also associated with the down-regulation of hepatic acyl CoA:cholesterol acytransferase (ACAT) activity (p < 0.05). Addition of lecithin plus phytosterol mixture to the hypercholesterolemic diet did not significantly affect blood and hepatic lipid concentrations (with the exception of 36% decrease in hepatic triglyceride level, p < 0.05) as well as hepatic ACAT activity compared to feeding the hypercholesterolemic diet supplemented with phytosterol alone. These results indicate that combining lecithin, at a 0.15% level, with a phytosterol mixture-supplemented diet does not exhibit an additive effect in regulating hepatic ACAT activity or lowering blood cholesterol in hypercholesterolemic rats.  相似文献   

7.
The effects of dietary octopine, which is one of the major extractive component of marine molluscs, on the level of serum and liver cholesterol of rats fed with cholesterol-enriched or cholesterol-free diets were investigated. Dietary supplementation with 1.5% octopine in a cholesterol-enriched diet significantly decreased the serum total- and VLDL + LDL-cholesterol levels and by contrary increased the serum HDL-cholesterol level in rats. The same tendency was observed in the rats fed with 1.5% octopine in a cholesterol-free diet.  相似文献   

8.
The aim of this study was to determine the impact of dietary plant sterols and stanols on sterol incorporation and sterol-regulatory gene expression in insulin-treated diabetic rats and nondiabetic control rats. Diabetic BioBreeding (BB) and control BB rats were fed a control diet or a diet supplemented with plant sterols or plant stanols (5 g/kg diet) for 4 weeks. Expression of sterol-regulatory genes in the liver and intestine was assessed by real-time quantitative polymerase chain reaction. Diabetic rats demonstrated increased tissue accumulation of cholesterol and plant sterols and stanols compared to control rats. This increase in cholesterol and plant sterols and stanols was associated with a marked decrease in hepatic and intestinal Abcg5 (ATP-binding cassette transporter G5) and Abcg8 (ATP-binding cassette transporter G8) expressions in diabetic rats, as well as decreased mRNA levels of several other genes involved in sterol regulation. Plant sterol or plant stanol supplementation induced the accumulation of plant sterols and stanols in tissues in both rat strains, but induced a greater accumulation of plant sterols and stanols in diabetic rats than in control rats. Surprisingly, only dietary plant sterols decreased cholesterol levels in diabetic rats, whereas dietary plant stanols caused an increase in cholesterol levels in both diabetic and control rats. Therefore, lower expression levels of Abcg5/Abcg8 in diabetic rats may account for the increased accumulation of plant sterols and cholesterol in these rats.  相似文献   

9.
植物甾醇.甾烷醇在自然界广泛分布,以游离型、脂肪酸酯或糖苷形式存在。植物甾醇.甾烷醇能抑制小肠内胆固醇的吸收,具有降低血清胆固醇的作用。由于其来源于天然植物,且吸收率很低,因此具有很高的安全性。本文对植物甾醇.甾烷醇的降血清胆固醇作用做一综述。  相似文献   

10.
Regulation of cholesterol metabolism by dietary plant sterols   总被引:1,自引:0,他引:1  
Renewal has occurred in the use of plant sterols for the treatment of hypercholesterolemias. A novel development was to convert plant sterols to corresponding stanols and esterify them to fat soluble form. In contrast to the crystalline plant sterols or stanols, plant stanol esters can be easily consumed during normal food intake in soluble form in different fat-containing food constituents when they have a potent cholesterol-lowering effect, shown in normo- and hypercholesterolemic men and women without or with coronary heart disease, children and diabetes. Cholesterol lowering is approximately 10% for total and 15% for LDL cholesterol, with the respective values for stanol ester margarine (2-3 g/day stanols) being 15% and 20%. Stanol esters reduce cholesterol absorption efficiency by up to 65%, increase cholesterol elimination in feces as cholesterol itself, usually not as bile acids, and stimulate cholesterol synthesis. Serum beta-carotene level is lowered, but no fat malabsorption or lowering of serum fat soluble vitamins have been observed. In contrast to plant sterols, stanols and their esters are minimally absorbed and they reduce serum plant sterol concentrations, also preventing statin-induced increase of plant sterols. Stanol ester margarine has been included in dietary treatment of hypercholesterolemia followed by the addition of drug treatment in resistant cases.  相似文献   

11.
The influence of partial replacement of starch by sucrose on dietary cholesterol-induced serum lipoprotein responses was examined in 10 male cynomolgus monkeys (Macaca fascicularis). In a crossover design two semipurified diets provided either starch or starch and sucrose (1:1) as carbohydrate (49% by calories) with 0.4 mg cholesterol/kcal. Six weeks of starch + sucrose diet resulted in significantly reduced levels (mean +/- SE, mg/dl) of serum total cholesterol (264 +/- 9 vs 244 +/- 8) and apo B (110 +/- 6 vs 96 +/- 6) when compared with starch diet, whereas serum triglyceride levels remained similar between diets. With respect to changes in lipids and apolipoproteins (A-I or B) of very low (VLDL), low (LDL), intermediate (IDL), and high (HDL) density lipoproteins, starch + sucrose diet significantly increased VLDL-apo B (+34%), and decreased LDL-cholesterol (-18%) and LDL-apo B (-15%) as compared with starch alone; no differences were found in IDL and HDL between diets. The relative proportion of starch to sucrose in a diet appears to influence the magnitude of response of lipoproteins to dietary cholesterol.  相似文献   

12.
Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets (control) alone or enriched with atorvastatin or atorvastatin plus plant sterols or stanols. Atorvastatin decreased serum cholesterol by 22% and lesion area by 57%. Adding plant sterols or stanols to atorvastatin decreased serum cholesterol by 39% and 41%. Cholesterol-standardized serum plant sterol concentrations increased by 4- to 11-fold during sterol plus atorvastatin treatment versus stanol plus atorvastatin treatment. However, lesion size decreased similarly in the sterol plus atorvastatin (-99% vs. control) and the stanol plus atorvastatin (-98%) groups, with comparable serum cholesterol levels, suggesting that increased plant sterol concentrations are not atherogenic. Our second study confirms this conclusion. Compared with lesions after a 33 week atherogenic period, lesion size further increased in controls (+97%) during 12 more weeks on the diet, whereas 12 weeks with the addition of plant sterols or stanols decreased lesion size (66% and 64%). These findings indicate that in LDLr(+/-) mice 1) increased cholesterol-standardized serum plant sterol concentrations are not atherogenic, 2) adding plant sterols/stanols to atorvastatin further inhibits lesion formation, and 3) plant sterols/stanols inhibit the progression or even induce the regression of existing lesions.  相似文献   

13.
Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.  相似文献   

14.
Fifteen patients with gall stones who were taking chenodeoxycholic acid(CDCA) 15 mg/kg at bedtime participated in two separate experiments to investigate the effects of altering sterol intake on the cholesterol saturation index (SI) of fasting gall-bladder bile. In experiment I the 15 patients on an unrestricted diet had a SI of 0.87 +/- 0.04 (mean +/- SE of mean), which fell to 0.75 +/- 0.04 after one week in hospital on a diet of 100 mg cholesterol daily. In experiment II seven of the patients were given four different dietary regimens lasting one month each in random order as outpatients. On a diet of 600 mg of cholesterol daily the mean SI was 0.72 +/- 0.05, which fell to 0.67 +/- 0.05 when the patients were put on a 100 mg cholesterol diet. The addition of plant sterols (3 g daily) to both diets raised the mean SIs to 0.80 +/- 0.05 and 0.77 +/- 0.05 respectively. The percentage CDCA in bile was unaffected by alterations in the cholesterol and plant sterol intakes. We conclude that a low-cholesterol diet but not a high intake of plant sterols enhances the effect of CDCA in patients with gall stones.  相似文献   

15.
Plant sterols such as sitosterol and campesterol are frequently administered as cholesterol-lowering supplements in food. Recently, it has been shown in mice that, in contrast to the structurally related cholesterol, circulating plant sterols can enter the brain. We questioned whether the accumulation of plant sterols in murine brain is reversible. After being fed a plant sterol ester-enriched diet for 6 weeks, C57BL/6NCrl mice displayed significantly increased concentrations of plant sterols in serum, liver, and brain by 2- to 3-fold. Blocking intestinal sterol uptake for the next 6 months while feeding the mice with a plant stanol ester-enriched diet resulted in strongly decreased plant sterol levels in serum and liver, without affecting brain plant sterol levels. Relative to plasma concentrations, brain levels of campesterol were higher than sitosterol, suggesting that campesterol traverses the blood-brain barrier more efficiently. In vitro experiments with brain endothelial cell cultures showed that campesterol crossed the blood-brain barrier more efficiently than sitosterol. We conclude that, over a 6-month period, plant sterol accumulation in murine brain is virtually irreversible.  相似文献   

16.
17.
The effects of dietary cholesterol and fatty acids on the plasma cholesterol level and rates of very low density lipoprotein (VLDL) cholesterol secretion and low density lipoprotein (LDL) transport through LDL receptors in the liver of the hamster were investigated. Increases of plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes were observed in animals fed a diet enriched with 0.1% cholesterol for 2 weeks in comparison with animals fed a control diet. The addition of dietary palmitic acid accelerated the effect of dietary cholesterol on plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes. Dietary linoleic acid accelerated the effect of dietary cholesterol on VLDL-cholesterol secretion from hepatocytes and diminished the effect on the plasma LDL-cholesterol level. Hepatic LDL receptor activity was considerably suppressed by a control diet containing 0.05% cholesterol and a further small suppression was induced by a diet enriched with 0.1% cholesterol with or without 5% palmitic acid. However, dietary linoleic acid diminished the effect of dietary cholesterol on the suppression of hepatic LDL receptor activity. These results suggest that dietary palmitic acid augments the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level through acceleration of VLDL-cholesterol secretion from the liver, and that dietary linoleic acid diminishes the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level by preventing the suppression of hepatic LDL receptor activity induced by cholesterol.  相似文献   

18.
Nine normal women, 22 to 37 years old, consumed controlled quantities of natural foods to test their responses to dietary cholesterol and saturated fat. All diets contained, as percentage of calories, 14% protein, 31% fat, and 55% carbohydrate. The main sources of polyunsaturated and saturated fats were corn oil and lard, respectively, and egg yolk was used for cholesterol supplementation. All subjects participated in four diet protocols of 15 days duration, and each diet period was separated by 3 weeks without diet control. The first diet (corn) was based on corn oil, had a polyunsaturated to saturated fat ratio (P/S) of 2.14, and contained 130 mg of cholesterol. The second diet (corn+) was identical to the first but contained a total of 875 mg of cholesterol. The third diet (lard) was based on lard, had a P/S ratio of 0.64, and contained 130 mg of cholesterol. The fourth diet (lard+) was identical to the third, but contained 875 mg of cholesterol per day. Changes of the plasma lipid, lipoprotein and apoprotein parameters relative to the corn diet were as follows: the corn+ diet significantly increased total plasma cholesterol, HDL-cholesterol, LDL-cholesterol, and apoB levels; the lard diet significantly increased total cholesterol, HDL-cholesterol, and apoB; and the lard+ diet significantly increased the total cholesterol, HDL-cholesterol, LDL-cholesterol, and apoA-I and apoB levels. There were no significant variations in VLDL-cholesterol, triglyceride, or apoE levels with these diets. The diets affected both the number of lipoprotein particles as well as the composition of LDL and HDL. Compared to the corn diet, cholesterol and saturated fat each increased the number of LDL particles by 17% and 9%, respectively, and the cholesterol per particle by 9%. The combination of saturated fat and cholesterol increased particle number by 18% and particle size by 24%. Switching from lard+ to lard, corn+, or corn diets reduced LDL-cholesterol of the group by 18%, 11%, and 28%, respectively, while a large inter-individual variability was noted. In summary, dietary fat and cholesterol affect lipid and lipoprotein levels as well as the particle number and chemical composition of both LDL and HDL. There is, however, considerable inter-individual heterogeneity in response to diet.  相似文献   

19.
Dietary plant sterols accumulate in the brain   总被引:1,自引:0,他引:1  
Dietary plant sterols and cholesterol have a comparable chemical structure. It is generally assumed that cholesterol and plant sterols do not cross the blood-brain barrier, but quantitative data are lacking. Here, we report that mice deficient for ATP-binding cassette transporter G5 (Abcg5) or Abcg8, with strongly elevated serum plant sterol levels, display dramatically increased (7- to 16-fold) plant sterol levels in the brain. Apolipoprotein E (ApoE)-deficient mice also displayed elevated serum plant sterol levels, which was however not associated with significant changes in brain plant sterol levels. Abcg5- and Abcg8-deficient mice were found to carry circulating plant sterols predominantly in high-density lipoprotein (HDL)-particles, whereas ApoE-deficient mice accommodated most of their serum plant sterols in very low-density lipoprotein (VLDL)-particles. This suggests an important role for HDL and/or ApoE in the transfer of plant sterols into the brain. Moreover, sitosterol upregulated apoE mRNA and protein levels in astrocytoma, but not in neuroblastoma cells, to a higher extend than cholesterol. In conclusion, dietary plant sterols pass the blood-brain barrier and accumulate in the brain, where they may exert brain cell type-specific effects.  相似文献   

20.
The aim of the study was to ascertain whether the A-204C polymorphism in the cholesterol 7 -hydroxylase (CYP7A1) gene plays any role in determining LDL-cholesterol (LDL-C) concentration responsiveness to a high-fat diet. The concentrations of total cholesterol and LDL-cholesterol were measured in eleven healthy men (age: 30.9+/-3.2 years; BMI: 24.9+/-2.7 kg/m(2);;) who were homozygous for either the -204A or -204C allele, after 3 weeks on a low-fat (LF) diet and 3 weeks on a high-fat (HF) diet. During both dietary regimens, the isocaloric amount of food was provided to volunteers; LF diet contained 22 % of energy as a fat and 2.2 mg of cholesterol/kg of body weight a day, HF diet 40 % of fat and 9.7 mg of cholesterol/kg of body weight a day. In six subjects homozygous for the -204C allele, the concentrations of cholesterol and LDL-cholesterol were significantly higher on HF than on LF diet (cholesterol: 4.62 vs. 4.00 mmol/l, p<0.05; LDL-C: 2.15 vs. 1.63 mmol/l, p<0.01, respectively); no significant change was observed in five subjects homozygous for the -204A allele. There were no other differences in lipid and lipoprotein-lipid concentrations. Therefore, the polymorphism in the cholesterol 7alpha-hydroxylase promotor region seems to be involved in the determination of cholesterol and LDL-C responsiveness to a dietary fat challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号