首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the photochemical changes of bilirubin were studied at a constant concentration of bilirubin bound either to the first class or to the second class of binding sites of the human serum albumin molecule. The more the bilirubin binds to the first class of binding sites in the human serum albumin molecule, the more readily geometric photoequilibrium to give (ZE)-bilirubin takes place. The more the bilirubin binds to the second class of binding sites or allosterically transformed binding sites induced by added SDS, the more readily structural photoisomerization, i.e. the formation of (EZ)-cyclobilirubin, takes place. When the serum bilirubin concentration is at low, safe, values bilirubin binds exclusively to the first class of binding sites and serves as an antioxidant [Onishi, Yamakawa & Ogawa (1971) Perinatology 1, 373-379]; at these concentrations human serum albumin protects bilirubin from irreversible photodegradation by only allowing readily reversible geometric photoisomerization. As the serum bilirubin concentration increases to high, and potentially dangerous, values, bilirubin binds to the second class of binding sites, and under these conditions human serum albumin seems to promote the photocyclization of bilirubin. During irradiation human serum albumin seems to act by retaining low, useful, concentrations of bilirubin while facilitating irreversible photoisomerization of excess bilirubin.  相似文献   

2.
Affinity labeling with palmitic acid was used to identify long chain fatty acid-binding sites of bovine serum albumin. [1-14C]Palmitic acid was activated by esterification with N-ethyl-5-phenyl-isoxazolium-3'-sulfonate (Woodward's Reagent K). The product was purified by chromatography and shown to compete with unesterified fatty acids for binding sites on bovine serum albumin. Activated [14C]palmitic acid coupled covalently to albumin producing [14C]palmitoyl-albumins containing from 0.12 to a maximum of 6.9 mol of attached label per mol of albumin. The presence of the covalently attached affinity label depressed binding of other long chain fatty acids to albumin. Albumin carrying 1 eq. of [14C]palmitate was cleaved using cyanogen bromide, pepsin, and trypsin. Radioactive peptides were isolated by high pressure liquid chromatography. Three peptides accounted for greater than 90% of the label. Residues labeled with [14C]palmitate were identified as Lys-116, Lys-349 and Lys-473, and the relative distribution of label was 10, 45, and 45% respectively, consistent with the presence of two strong binding sites in the COOH-terminal half of albumin and a somewhat weaker site in the NH2-terminal half.  相似文献   

3.
Binding between human serum albumin and a spin-labelled derivative of bilirubin was investigated by circular dichroism, fluorescence quenching, electron spin resonance and visible spectroscopy. The orders of magnitude of the binding constants obtained by flurorescence quenching and electron spin resonance spectroscopies were 10(7) and 10(3) 1 . mol-1, respectively. These data suggest that most spin-labelled bilirubin interacts with human serum albumin at the side not holding the spin-labelled side-arm. CD measurements showed the presence of at least two sites, associated with opposite Cotton effects. It is worthy of note that the Cotton sign of the first site is inverted with respect to the corresponding one of bilirubin. CD measurements on mixed systems (spin-labelled bilirubin/human serum albumin/bilirubin) were also performed. The decomposition of the ternary curves shows that the rotatory power of bilirubin bound to human serum albumin is higher in the ternary system than in the binary (bilirubin/human serum albumin). The corresponding CD measurements for the binding between spin-labelled bilirubin and bovine serum albumin are also reported and discussed.  相似文献   

4.
W G Hanstein  Y Hatefi  H Kiefer 《Biochemistry》1979,18(6):1019-1025
2-Amino-4-nitrophenol was tritiated in an acid-catalyzed hydrogen exchange reaction. Radioactive 2-azido-4-nitrophenol with a specific radioactivity up to 21 mCi/mmol was synthesized from 2-amino-4-nitrophenol by diazotization and azide coupling. The photochemical properties of the uncoupler, 2-azido-4-nitrophenol, were studied as free solute and as ligand bound to uncoupler binding sites in bovine serum albumin and mitochondria. Based on product analyses, irradiation of free or bound 2-azido-4-nitrophenolate with visible light results in the formation of nitrene intermediates with a singlet to triplet ratio of 6:1 to 9:1. 2-Azido-4-nitrophenolate and bovine serum albumin form a strong 1:1 complex (KD = 0.7 micron) which can be converted into a photoproduct with a covalent bond between the label and the protein. The acid dissociation constant of the protein-bound 2-amino-4-nitrophenol moiety is strongly pH dependent. Photoaffinity labeling of mitochondria by 2-azido-4-nitrophenolate follows a pattern expected from equilibrium binding studies using normal and lipid-depleted particles: polypeptides were found to bear 90-95% of the radioactive label, and 5-10% of the latter was bound to phospholipids. Two polypeptides (approximately 56 000 and 31 000 daltons) were associated with 60% of the label, indicating a high degree of specific photochemical labeling.  相似文献   

5.
Although the interactions between bilirubin and serum albumin are among the most studied serum albumin-ligand interactions, the binding-site location and the participation of bilirubin-serum albumin complexes in pathological and physiological processes are under debate. In this article, we have benefited from the chiral structure of bilirubin and used CD spectroscopy to characterize the structure of bilirubin bound to human and bovine serum albumins. We determined that in a phosphate buffer at pH 7.8 there are three binding sites in both human and bovine serum albumins. While the primary binding sites in human and bovine serum albumins bind bilirubin with P- and M-helical conformations, respectively, the secondary binding sites in both albumins bind bilirubin in the P-helical conformation. We have shown that the bonding of bilirubin to the serum albumin matrix is a more favorable process than the self-association of bilirubin under the studied conditions, with a maximum of three bound bilirubins per serum albumin molecule. Although bilirubin bound to the primary binding site has attracted the most attention, the presented results have documented the impact of the secondary binding sites which are relevant in the displacement reactions between BR and drugs and in the phenomena where bilirubin plays antioxidant, antimutagenic, and anti-inflammatory roles. Chirality 00:000000, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The binding isotherm and unique electron spin resonance spectral characteristics of a monoanionic spin label (1-gamma-aminobutyrate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene) and a dianionic spin label (1-glutamate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene) are used to prove the steroid modulation of serum albumin binding properties. Effects of a selected number of steroids (progesterone, testosterone, estradiol, aldosterone, estriol, corticosterone, deoxycorticosterone, hydrocortisone, and cortisone) on the binding isotherm of the monoanionic spin label binding to serum albumin have been determined. At the steroid/albumin ratio of 0.5 to 1, progesterone, testosterone, and estradiol enhance binding of the spin label at all concentrations studied. However, the remaining steroids exert an inhibitory effect at low spin label/albumin ratios and an enhancement effect at high spin label/albumin ratios. Progesterone and cortisone effects on the resonance spectra of the spin label bound to serum albumin confirm the enhancement and displacement properties of these ligands. Thus, like fatty acids, steroids may bind to either the primary or secondary bilirubin binding sites and also allosterically perturb the binding properties of serum albumin. The in vivo importance of the steroid-albumin interaction is discussed.  相似文献   

7.
Albumin binding is a crucial determinant of bilirubin clearance in health and bilirubin toxicity in certain disease states. However, prior attempts to measure the affinity of albumin for bilirubin have yielded highly variable results, reflecting both differing conditions and the confounding influence of impurities. We therefore have devised a method based on serial ultrafiltration that successively removes impurities in [(14)C]bilirubin until a stable binding affinity is achieved, and then we used it to assess the effect of albumin concentration and buffer composition on binding. The apparent binding affinity of human serum albumin for [(14)C]bilirubin was strongly dependent on assay conditions, falling from (5.09 +/- 0.24) x 10(7) liters/mol at lower albumin concentrations (15 microm) to (0.54 +/- 0.05) x 10(7) liters/mol at higher albumin concentrations (300 microm). To determine whether radioactive impurities were responsible for this change, we estimated impurities in the stock bilirubin using a novel modeling approach and found them to be 0.11-0.13%. Formation of new impurities during the study and their affinity for albumin were also estimated. After correction for impurities, the binding affinity remained heavily dependent on the albumin concentration (range (5.37 +/- 0.26) x 10(7) liters/mol to (0.65 +/- 0.03) x 10(7) liters/mol). Affinities decreased by about half in the presence of chloride (50 mm). Thus, the affinity of human albumin for bilirubin is not constant, but varies with both albumin concentration and buffer composition. Binding may be considerably less avid at physiological albumin concentrations than previously believed.  相似文献   

8.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

9.
Both isomers of diamminedichloroplatinum(II) bind to albumin and induce the formation of the albumin dimer (MW approximately 140 kDa). The trans isomer exhibits a much greater tendency to induce a protein dimerization than the cis isomer. Under similar experimental conditions, the phosphonic derivative of diammineplatinum(II) (DBP) does not induce any dimer formation. The amount of bound complex per mol of human serum albumin (HSA, for an incubation time of 7 days) was found to be 6, 10.5 and 1 mol for cis-, trans-DDP and DBP, respectively. The relative fluorescence intensity of platinum-bound HSA decreases to about 55% for cis-DDP, 45% for trans-DDP and to 85% for DBP when compared to the complex-free protein, suggesting that the binding occurs in the proximity of the Trp214 residue. The structural studies (CD) have shown that only DDP-isomers cause the distinct modification of HSA native structure (alpha-helical content). Pt(II) complexes binding to HSA affect the affinity of HSA towards heme and bilirubin. High excess of DDP prevents the heme and bilirubin binding, while DBP affects this binding much less effectively due to the low amount of the protein-bound complex. Reactions of platinum complexes with albumin are believed to play an important role in the metabolism of this anticancer drug. The minor effect of DBP on HSA may indicate that the toxicity of the phosphonate analog is much lower than toxicities of DDP isomers, most likely due to kinetic reasons.  相似文献   

10.
The interaction of bilirubin with aspirin-modified human serum albumin (HSA) and the influence of iron tetrasulfonated phthalocyanine on bilirubin binding by the native protein has been studied by difference spectroscopy and circular dichroism measurements. Spectroscopic studies of the systems containing bilirubin and aspirin-modified HSA compared to the analogous systems with the native protein have shown that selective acetylation of albumin at lysine 199 inhibits bilirubin binding by this protein. In both cases, interaction between bilirubin and albumin leads to complex formation at a molar ratio of ligand to protein of 2:1. The studies of the reaction of bilirubin with fragments of albumin produced by reaction with CNBr have demonstrated that one of the strong bilirubin binding sites is located in the M fragment and is close to the high-affinity binding site of aspirin. The other one was found in fragment C. Acetylation of albumin brings about marked conformational change in the protein, which probably accounts for the decrease in its ability to react with anti-HSA antibody. Bilirubin does not change the secondary structure of albumin but, like aspirin, lowers its antigenicity. It has been suggested that the decrease in antigenic properties in this case results from cooperation of the closely neighboring antigenic and bilirubin-binding sites. The studies of the influence of iron(III) tetrasulfonated phthalocyanine on bilirubin binding by HSA suggest that there is no competition between strong sites for iron(III) tetrasulfonated phthalocyanine and bilirubin, but these compounds compete for some of the weaker sites.  相似文献   

11.
The photoreactive nucleotides [2-3H]8-azido-ATP and [2-3H]8-azido-ADP could be used to label the nucleotide binding sites on isolated mitochondrial F1-ATPase to a maximum of 4 mol of nucleotide per mol F1, also when the F1 was depleted of tightly bound nucleotides. At a photolabel concentration of 300-1000 microM, label was found on both alpha and beta subunits in a typically 1:3 ratio, independent of the total amount bound. Under these conditions the covalent binding of two nucleotides is needed for full inactivation (Wagenvoord, R.J., Van der Kraan, I. and Kemp, A. (1977) Biochim. Biophys. Acta 460, 17-24). At lower concentrations of [2-3H]8-azido-ATP (20 microM), it was found that covalent binding of only 1 mol of nucleotide per mole F1 was required for complete inactivation to take place indicating catalytic site cooperativity in the mechanism of ATP hydrolysis. Under those conditions, radioactivity was only found on the beta subunits, which would indicate that the catalytic site is located on a beta subunit and that a second site is located on the alpha/beta interface. It is found that four out of the six nucleotide binding sites are exchangeable and can be labelled with 8-azido-AT(D)P, i.e., two catalytic sites and two non-catalytic sites.  相似文献   

12.
Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic method, based upon a difference of light absorption spectrum for free and bound bilirubin. The observations were supplemented with previous data from an independent technique, measurement of oxidation rates of free bilirubin with hydrogen peroxide and peroxidase. A continuous isotherm was obtained, showing binding of at least 4 mol bilirubin per mole albumin with the following stoichiometric binding constants, 1.11 X 10(8), 1.7 X 10(7), 8 X 10(5), and 4 X 10(4) M-1 at pH 8.2, ionic strength 0.15 M, 25 degrees C. The binding is anticooperative at all steps. A saturation level was not reached. Cobinding of bilirubin and laurate was studied, with up to 2 mol of each ligand per mole albumin, using the peroxidase method for determination of free equilibrium concentrations of bilirubin, and a dialysis rate technique for free laurate. The findings could be described in terms of a stoichiometric model. Heterotropic cooperativity was present among the first bilirubin and the first and second laurate molecules. More than two molecules of either ligand can be bound at the same time.  相似文献   

13.
A method for covalent coupling of bilirubin to albumin is described. Human serum albumin-bilirubin (1:1 complex) has been treated with water soluble carbodiimide in order to obtain covalent coupling of bilirubin to albumin. The reaction conditions have been varied with respect to pH, reaction time and concentration of reagent to obtain the optimal coupling. The prepared albumin-bilirubin compounds were investigated by spectrophotometry, gel filtration and gel electrophoresis to ascertain the covalent nature of the bond and to characterize the products further. Gel electrophoresis and gel filtration showed that a monomer fraction could be prepared, and this fraction was a suitable material for further studies.  相似文献   

14.
A mathematical treatment and an original microcalorimetric method are developed to verify an eventual competitive binding between any two substances for the same macromolecule. To apply this method, a competitive binding of L-tryptophan and one benzodiazepin (dipotassium chlorazepate) for human serum albumin is perfectly demonstrated. The association constants and the enthalpy variations are equal to 14 000 +/- 2000 M-1 and --6.6 +/- 0.2 kcal/mol for human serum albumin . tryptophan complex and 13 000 +/- 1000 M-1 and --10.0 +/- 0.2 kcal/mol for human serum albumin . chlorazepate complex. In all cases the stoichiometry is equal to one. The binding of tryptophan to human serum albumin is partially stereospecific; the association constant and the enthalpy variation for D-tryptophan complex are equal, respectively, to 1000 +/- 200 M-1 and --2.6 +/- 0.3 kcal/mol.  相似文献   

15.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

16.
Photobilirubin II, a stereoisomer of bilirubin, binds to human serum albumin at a single binding site (K = 2.2 x 10(6)M-1), presumably the high-affinity bilirubin-binding site. Binding in the secondary (class II) binding sites is of minor importance. The results are discussed with respect to photometabolism of bilirubin and as a possible source of error in the determination of bilirubin unbound to albumin.  相似文献   

17.
The effects of various ligands on bilirubin-serum albumin complexes in aqueous solution were investigated at pH 7.4 and 27 °C by circular dichroism (CD) measurements. The ligands included various penicillins, benzoic acid derivatives, and various lower aliphatic alcohols, using a molar excess of charcoal-treated human or bovine serum albumin with respect to bilirubin. In all cases investigated, significant changes in the visible-range CD spectra of the bilirubin-serum albumin complexes occurred within a certain range of added ligand concentrations. For several such ligand systems, analogous CD effects could be measured on both diluted and undiluted human blood serum or plasma. For part of the isolated albumin-ligand systems, significant dissociation of the bilirubin from the albumin was demonstrated by electrophoretic and analytical ultracentrifugation measurements, while other systems did not reveal measurable dissociation under the conditions used, indicating the formation of a ternary complex. A scheme of equilibria among all complex components is proposed, which includes both dissociation of the bilirubin and ternary complex formation in which the bilirubin conformation appears to be modified. At least two different sets of binding sites (competitive and noncompetitive) for added ligands are assumed. Values of apparent parameters describing the formation of ternary complexes from the bilirubin-albumin complex are estimated for a number of systems. Some relationships between the chemical structure of a ligand and its effect on the bilirubin-serum albumin complex are deduced. The relevance of the results obtained for the isolated protein-ligand complexes with respect to in vivo conditions is evaluated.  相似文献   

18.
Binding sites of bile acids on human serum albumin were studied using various probes: dansylsarcosine (site I probe), 7-anilinocoumarin-4-acetic acid (ACAA, site II probe), 5-dimethylaminonaphthelene-1-sulfonamide (DNSA, site III probe), cis-parinaric acid (probe for fatty acid binding site) and bilirubin. Bile acids competitively inhibited the binding of dansylsarcosine to human serum album whereas bile acids enhanced the binding of ACAA, DNSA, cis-parinaric acid and bilirubin. Considering the concentrations of bile acids required to inhibit the binding of dansylsarcosine to human serum albumin, the secondary binding site of bile acids may correspond to site I. Dissociation constants (Kd) of the primary binding sites of lithocholic and chenodeoxycholic acid to human serum albumin were approximately 0.2 and 4 μM, respectively, which was measured by equilibrium dialysis at 37° C. All the bile acids and their sulfates and glucuronides inhibited the binding of chenodeoxycholic acid to human serum albumin. Lithocholic and chenodeoxycholic acid and their sulfates and glucuronides exhibited more inhibition than cholic acid and its conjugates. In conclusion, bile acids may bind to a novel binding site on human serum albumin.  相似文献   

19.
The introduction of a new spin-labeled anionic ligand, 1-gamma-aminobutyrate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene, is reported. Under the experimental conditions, the first molar equivalent of this ligand is 93% bound to human serum albumin. With the addition of palmitate, the free spin label concentration decreases greatly, by almost 80%, in the presence of a fatty acid:albumin ratio of 3:1 to 4:1. The spectral characteristics of the bound spin label are also affected. The changes seen in the intensity of and the splitting between the high and low field extrema are indicative of perturbations of the protein molecule. It is seen then that the binding of each molar equivalent of fatty acid effects the conformation state of albumin and allosterically affects albumin binding properties. Computer spectral subtractions, furthermore, suggest that the binding of the first molar equivalent of palmitate specifically increases the affinity of the first two 1-gamma-amino-butyrate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene binding sites. The present results indicate that fluctuations in serum free fatty acid levels within the physiological range may have a major modulatory effect on the free serum levels of certain drugs and/or physiological substances that bind to albumin.  相似文献   

20.
The specificity of protein labeling by an affinity label of glucocorticoid receptors, dexamethasone 21-mesylate (Dex-Mes), was investigated using bovine serum albumin (BSA) as a model. During the early stages of [3H]Dex-Mes labeling at pH 8.8, approximately 90% of the covalent bond formation occurred at the one non-oxidized cysteine (Cys-34) of BSA. The nonspecific labeling was equally distributed over the rest of the BSA molecule. [3H]Dex-Mes labeling of Cys-34 was totally, and specifically inhibited by nearly stoichiometric amounts of the thiol-specific reagent methyl methanethiolsulfonate (MMTS). Thus both Dex-Mes and MMTS appear to react very selectively with thiols under our conditions. In reactions with hepatoma tissue culture (HTC) cell glucocorticoid receptors, MMTS was equally efficient in preventing [3H]dexamethasone binding to receptors and [3H]Dex-Mes labeling of the 98-kDa receptor protein. These results indicate that Dex-Mes labeling of the glucocorticoid receptor involves covalent reaction with at least one cysteine in the steroid binding site of the receptor. Small (approximately 1600-dalton) fragments of the [3H]Dex-Mes-labeled 98-kDa receptor were generated by limit proteolysis with trypsin, chymotrypsin, and Staphylococcus aureus V8 protease under denaturing conditions. Data from these fragments on 15% sodium dodecyl sulfate-polyacrylamide gels were consistent with all of the covalent [3H] Dex-Mes being located on one or a few cysteines in one approximately 15-residue stretch of the receptor. Further studies revealed no differences in the limit protease digestion patterns of activated and unactivated [3H]Dex-Mes-labeled receptors with trypsin, chymotrypsin, or V8 protease under denaturing conditions. These data suggest that activation does not cause any major covalent modifications of the amino acids immediately surrounding the affinity-labeled cysteine(s) of the steroid binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号