首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Incubation of 5-azacytosine-substituted DNA ([5-aza-C]DNA) with nuclear proteins leads to the formation of highly stable DNA . protein complexes which remain intact in the presence of 1 M NaCl and/or 0.6% Sarkosyl. The proteins involved in binding double-stranded [5-aza-C]DNA in these stable complexes comprise a specific subset of non-histone nuclear proteins that includes DNA methyltransferase. Complex formation does not require S-adenosylmethionine and does not involve covalent linkage of protein to DNA or modification of 5-azacytosine residues. Non-histone nuclear proteins do not form complexes with double-stranded unsubstituted DNA that are resistant to dissociation with NaCl and Sarkosyl but are capable of forming such complexes with single-stranded DNA regardless of whether it contains 5-azacytosine residues or not. However, it can be demonstrated 1) that single-stranded regions do not account for stable binding of proteins to native [5-aza-C]DNA and 2) that many nuclear proteins which form stable complexes with single-stranded DNA are incapable of forming such complexes with double-stranded [5-aza-C]DNA. Synthesis of [5-aza-C]DNA by cells growing in the presence of either 5-azacytidine or 5-aza-2'-deoxycytidine leads to rapid loss of extractable DNA methyltransferase (Creusot, F., Acs, G., and Christman, J.K. (1982) J. Biol. Chem. 257, 2041-2048). Analogous depletion of non-histone nuclear proteins capable of forming stable complexes with [5-aza-C]DNA in vitro is observed, suggesting that the same proteins can form highly stable complexes with [5-aza-C]DNA in vitro and in vivo. Formation of stable complexes between non-histone nuclear proteins and [5-aza-C]DNA could potentially affect not only the activity of DNA methyltransferase but the action of other regulatory proteins or enzymes that interact with DNA. Such interactions could explain effects of 5-azacytidine on gene expression that cannot be directly linked to loss of methyl groups from DNA.  相似文献   

3.
In vitro methylation of CpG-rich islands.   总被引:3,自引:0,他引:3       下载免费PDF全文
D Carotti  F Palitti  P Lavia    R Strom 《Nucleic acids research》1989,17(22):9219-9229
CpG islands are distinguishable from the bulk of vertebrate DNA for being unmethylated and CpG-rich. Since CpG doublets are the specific target of eukaryotic DNA methyltransferases, CpG-rich sequences might be expected to be good methyl-accepting substrates in vitro, despite their unmethylated in vivo condition. This was tested using a partially purified DNA-methyltransferase from human placenta and several cloned CpG-rich or CpG-depleted sequences. The efficiency of methylation was found to be proportional to the CpG content for CpG-depleted regions, which are representative of the bulk genome. However, methylation was much less efficient for CpG frequencies higher than 1 in 12 nucleotides, reaching only 60% of the expected level. That suggests that the close CpG spacing typical of CpG-islands somehow inhibits mammalian DNA methyltransferase. The implications of these findings on the in vivo pattern of DNA methylation are discussed.  相似文献   

4.
DNA-O6-methylguanine methyltransferase was purified from the nuclear fraction of fresh human placenta using ammonium sulphate precipitation, gel filtration, affinity chromatography on DNA-cellulose and hydroxyapatite. The methyltransferase preparation was approximately 1–2% pure based on specific activity, and was free of nucleic acids. The protein reacts stoichiometrically with O6-methylguanine in DNA with apparent second-order kinetics. The human methyltransferase has a pH optimum of about 8.5, similar to that of the corresponding rat and mouse proteins. NaCl inhibits the reaction in a concentration-dependent fashion. The human protein, like the rodent andE. coli methyltransferases, needs no cofactor. While lmM MnCl2, lmM spermidine, 5mM MgCl2 and 10 mM EDTA individually do not significantly inhibit the initial rate of reaction, the protein is nearly completely inactive in 5 mM A1Cl3 or FeCl2 or 10 mM spermidine. The initial rate of reaction increases as a function of temperature at least up to 42°. The reaction is inhibited by DNA in a concentration-dependent manner, with single-stranded DNA being more inhibitory than duplex DNA.  相似文献   

5.
6.
7.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

8.
Mammalian DNA methyltransferase Dnmt3a is required for de novo methylation of CpG dinucleotides in genomic DNA. While DNA methyltransferase inhibitors have been extensively utilized both in vitro and in vivo, no stimulator of catalytic activity has been identified thus far. Here we show that the methyltransfer activity of Dnmt3a is stimulated by the addition of dimethyl sulfoxide (DMSO) to the reaction solution in vitro. Enzymatic analysis of initial reaction velocity suggests that the DMSO stimulation effect depends on the interaction between DMSO and the reaction substrates (DNA and AdoMet), but not the enzyme itself.  相似文献   

9.
10.
O6-Methylguanine-DNA methyltransferase, a ubiquitous and unusual DNA repair protein, eliminates mutagenic and cytotoxic O6-alkylguanine from DNA by transferring the alkyl group to one of its cysteine residues in a second-order suicide reaction. This 22-kDa protein was immunoaffinity-purified to homogeneity from cultured human lymphoblasts (CEM-CCRF line) and compared with the O6-methylguanine-DNA methyltransferase purified to homogeneity from Escherichia coli expressing a cloned human cDNA. The cellular and recombinant proteins were identical in size, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of intact molecules and their peptides. Immunoprobing of Western blots with three monoclonal antibodies specific for human cellular O6-methylguanine-DNA methyltransferase further indicated identity of the two proteins. The amino acid sequence of the cellular protein was experimentally determined for 87 out of a total of 207 residues and was found to be identical to that deduced from the cDNA sequence. A unique cysteine residue at position 145 was identified as the methyl acceptor site by autoradiographic analysis of peptides and sequence analysis of 3H-methylated O6-methylguanine-DNA methyltransferase. These observations establish that the cloned O6-methylguanine-DNA methyltransferase cDNA encodes the full-length O6-methylguanine-DNA methyltransferase polypeptide that is normally present in human cells. Moreover, the cellular protein does not appear to be significantly modified by posttranslational processes.  相似文献   

11.
Maturation of dendritic cells (DC) towards functional antigen-presenting cells is a complex process, the regulation of which may also involve epigenetic mechanisms. Thus, it is of interest to investigate how gene expression changes during DC maturation can be influenced with epigenetic agents, such as DNA methyltransferase or histone deacetylase inhibitors. Here, we document the effects of DNA methyltransferase inhibitor 5-azacytidine (5AC) and histone deacetylase inhibitor trichostatin A (TSA) on the murine bone marrow-derived, as well as on the human monocyte-derived DC maturation. The major impact of 5AC and TSA on the DC maturation process consisted in the inhibition of unmethylated CpG oligodeoxynucleotide (CpG ODN) 1826 or LPS-induced activation of pro- and anti-inflammatory cytokine gene expression activation. In the in vitro studies, TSA but not 5AC significantly reduced the capacity of the peptide-pulsed DC to induce total spleen as well as CD8(+) or CD4(+) cell proliferation. IFNγ production by the specific CD4(+) spleen cells co-cultured with TSA- but not with 5AC-treated DC was lower, as compared to the cytokine production after co-cultivation with untreated mature DC. Collectively, these results demonstrate the potential of epigenetic agents, which are under intensive investigation as promising anti-tumour agents, to hamper the immune response induction through their inhibitory effects on DC.  相似文献   

12.
Human estrogen-related receptor 2 (hERR2, ESRRB, ERRbeta, NR3B2) belongs to a class of nuclear receptors that bind DNA through sequence-specific interactions with a 5'-AGGTCA-3' estrogen response element (ERE) half-site in the major groove and an upstream 5'-TNA-3' site in the minor groove. This minor groove interaction is mediated by a C-terminal extension (CTE) of the DNA binding domain and is unique to the estrogen-related receptors. We have used synthetic pyrrole-imidazole polyamides, which bind specific sequences in the minor groove, to demonstrate that DNA binding by hERR2 is sensitive to the presence of polyamides in both the upstream minor groove CTE site and the minor groove of the ERE half-site. Thus, polyamides can inhibit hERR2 by two mechanisms, by direct steric blockage of minor groove DNA contacts mediated by the CTE and by changing the helical geometry of DNA such that major groove interactions are weakened. To confirm the generality of the latter approach, we show that the dimeric human estrogen receptor alpha (hERalpha, ESR1, NR3A1), which binds in the major groove of the ERE, can be inhibited by a polyamide bound in the opposing minor groove of the ERE. These results highlight two mechanisms for inhibition of protein-DNA interactions and extend the repertoire of DNA recognition motifs that can be inhibited by polyamides. These molecules may thus be useful for controlling expression of hERR2- or hERalpha-responsive genes.  相似文献   

13.
In vertebrates, DNA methylation plays an important role in the regulation of gene expression and embryogenesis. DNA methyltransferase, which catalyzes the introduction of a methyl group at the 5th position of cytosine in the CpG sequence, is highly accumulated in mouse oocytes and is excluded from nuclei [Carlson et al. (1992) Genes Dev. 6, 2536-2541]. In this study, we examined the expression level and localization of Xenopus DNA methyltransferase in oocytes during oogenesis. The DNA methyltransferase protein was detectable in stage III oocytes and increased thereafter, until the oocytes had matured. The rate of DNA methyltransferase synthesis rapidly increased after stage IV oocytes. Different from in mouse oocytes, DNA methyltransferase was equally distributed in the nuclear and post-nuclear fractions, in stage VI oocytes. DNA methyltransferase translocated into nuclei was uniformly localized in the nuclear matrix, and the accumulated DNA methyltransferase in stage VI nuclei had DNA methylation activity.  相似文献   

14.
CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations. As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be -3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

15.
In mammalians, demethylation of specific promoter regions often correlates with gene activation; inversely, dense methylation of CpG islands leads to gene silencing, probably mediated by methyl-CpG binding proteins. In cell lines and cancers, inhibition of tissue-specific genes and tumor suppressor genes expression seems to be related to such hypermethylation. The 5' end of the breast cancer predisposition gene BRCA1 is embedded in a large CpG island of approximately 2.7 kb in length. In human sporadic breast cancers, the down-regulation of BRCA1 does not seem to be related to BRCA1 gene alterations. Southern blot analysis and the bisulfite sequencing method indicate that the BRCA1 CpG island is regionally methylated in all human tissues analyzed and unmethylated in the gametes, suggesting a role for DNA methylation in the control of gene expression. We have therefore investigated the potential role of methyl-CpG binding proteins in the regulation of BRCA1 gene expression. In vitro, partial methylation of constructs containing this region strongly inhibits gene expression in the presence of MeCP2 protein. Moreover, in the five human cell lines analyzed, chemically induced hypomethylation is associated with BRCA1 gene activation. These data suggest that methyl-CpG binding proteins might be associated with the control of BRCA1 gene expression and that methyl-DNA binding proteins may participate in the regulation of gene expression in mammalian cells.  相似文献   

16.
17.
Abstract

CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations.

As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be ?3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

18.
19.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

20.
Methyl-accepting assays and a sensitive method for labeling specific CpG sites have been used to show that the DNA of F9 embryonal carcinoma cells decreases in 5-methylcytosine content by ca. 9% during retinoic acid-induced differentiation, whereas the DNA of dimethyl sulfoxide-induced Friend murine erythroleukemia (MEL) cells loses ca. 3.8% of its methyl groups. These values correspond to the demethylation of 2.2 X 10(6) and 0.9 X 10(6) 5'-CpG-3' sites per haploid genome in differentiating F9 and MEL cells, respectively. Fluorography of DNA restriction fragments methylated in vitro and displayed on agarose gels showed that demethylation occurred throughout the genome. In uninduced F9 cells, the sequence TCGA tended to be more heavily methylated than did the sequence CCGG, whereas this tendency was reversed in MEL cells. The kinetics of in vitro DNA methylation reactions catalyzed by MEL cell DNA methyltransferase showed that substantial numbers of hemimethylated sites accumulate in the DNA of terminally differentiating F9 and MEL cells, implying that a partial loss of DNA-methylating activity may accompany terminal differentiation in these two cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号