首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ants of the ponerine genus Odontomachus employ a trap-jaw mechanism that allows them to instantaneously close their long, sturdy mandibles to catch prey or to defend themselves. Photoelectric scanning has revealed that these trap-jaws can be closed in less than 0.5 ms and that they decelerate before they collide with each other. The mandible strike is released in a reflexlike action when particular trigger hairs are touched. This reflex takes 4 to 10 ms and is probably the fastest reflex yet described for any animal. This speed is based on a catch mechanism in the mandible joint that keeps the extended mandibles open during contraction of the powerful closer muscle and allows the potential energy it produces to be stored within cuticular elements, apodemes, and the closer muscle itself. During a strike a relatively small specialized trigger muscle unlocks the catch, instantaneously releasing the stored energy to accelerate the mandible.  相似文献   

2.
The study of the pharyngeal jaws in two geographically isolated Italian populations of Lebias fasciata indicated the presence of two phenotypes: the Adriatic phenotype with a large ceratobranchial V and upper and lower pharyngeal jaws bearing few large teeth and the Sicilian phenotype with a smaller ceratobranchial V and pharyngeal jaws with smaller and more numerous teeth. The morphological variations of pharyngeal jaws should be interpreted as a result of the geographical isolation of these two populations. J. Morphol. 241:107–114, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Prolonged swimming performances of two as yet unnamed species of three‐spined stickleback, Gasterosteus spp., were compared. The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, Texada Island, British Columbia, Canada, and are recent, morphologically distinct species. Limnetics had longer endurance during prolonged swimming than did benthics. The mean regression of the log10 of fatigue time (Ft, s) on swimming speed (U, standard length, LS s?1) for limnetics (log10Ft = 7·03 ? 0·46U) had a similar slope, but a significantly higher intercept than that for benthics (log10Ft = 5·55 ? 0·43U). Adult benthics were larger, heavier and deeper‐bodied fish than limnetics. Limnetics, however, had a significantly greater pectoral fin edge:base ratio (mean ± s .e .: limnetics, 4·58 ± 0·43; benthics, 3·63 ± 0·27). In addition, limnetics had significantly lower drag coefficients (CD) than benthics (limnetics, log10CD = ?0·49log10Re + 0·66; benthics, log10CD = ?0·26log10Re ? 0·30) where Re is the Reynolds number [(LSU?1), where U and ν are swimming velocity and the kinematic viscosity of the water, respectively]. Compared to their ancestral form, the anadromous three‐spined stickleback Gasterosteus aculeatus L., limnetics and benthics had significantly longer and shorter endurance times, respectively. In addition, both these fishes had significantly higher fast‐start velocities than their ancestral form. Selection due to differential resource use may have lead to divergence of body form, and, therefore, of steady swimming performance. Therefore predation may be the selective force for the similar high escape performance in these two fishes.  相似文献   

4.
Cross-sectional geometric properties of the postcanine mandibular corpus are determined for the only known specimen of Otavipithecus namibiensis, a middle Miocene hominoid from southern Africa. It is shown that Otavipithecus is unique in that several important mechanical properties of its mandible, including maximum and minimum moments of inertia and distribution of cortical bone, differ from patterns seen in both extant hominoids and the early hominids Australopithecus africanus and Australopithecus (Paranthropus) robustus. This is particularly apparent in the mechanical design of the posterior portion of the mandibular corpus for resisting increased torsional and transverse bending moments. Cortical index values at the level of M2 also reveal that both Otavipithecus and A. africanus are similarly designed to resist increased masticatory loads with relatively less cortical bone area, a highly efficient mechanical design. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The recent discovery of unexpectedly ancient human remains has fuelled interest about the first dispersion of Homo outside Africa. The Dmanisi mandible is perhaps one of the most interesting findings, as it supposedly represents one of the oldest hominids outside of Africa. Recently, different interpretations have been published about this specimen. Our comparison of the Dmanisi mandible with a large sample of mandibles and teeth has led us to a new interpretation. In our view, the Dmanisi mandible exhibits a unique combination of traits. Some of its features, taken in isolation, may be attributed to morphological extremes within the genus Homo. The architecture of the mandible as well as the morphology and dimensions of incisors, canines, and P3s are clearly primitive. However, dental traits such as the reduction of the talonid in the P4s and a distally decreasing molar series seems to be derived. Some combinations of these traits are found in specimens of Homo ergaster and differ from those generally present in later hominids. Thus, we propose that the Dmanisi mandible might be taxonomically classified as Homo sp. indet. (aff. ergaster). Furthermore, some aspects of the dentition in Dmanisi display close similarities to Asian Homo erectus. If the 1.8–1.6 Myr dating for the Dmanisi mandible is correct, the differentiation of the Asian branch of the genus Homo could be regarded as a very ancient event. Am J Phys Anthropol 107:145–162, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
PurposeFor the TomoTherapy® system, longitudinal conformation can be improved by selecting a smaller field width but at the expense of longer treatment time. Recently, the TomoEdge® feature has been released with the possibility to move dynamically the jaws at the edges of the target volume, improving longitudinal penumbra and enabling faster treatments. Such delivery scheme requires additional modeling of treatment delivery. Using a previously validated Monte Carlo model (TomoPen), we evaluated the accuracy of the implementation of TomoEdge in the new dose engine of TomoTherapy for 15 clinical cases.MethodsTomoPen is based on PENELOPE. Particle tracking in the treatment head is performed almost instantaneously by 1) reading a particle from a phase-space file corresponding to the largest field and 2) correcting the weight of the particle depending on the actual jaw and MLC configurations using Monte Carlo pre-generated data. 15 clinical plans (5 head-and-neck, 5 lung and 5 prostate tumors) planned with TomoEdge and with the last release of the treatment planning system (VoLO®) were re-computed with TomoPen. The resulting dose-volume histograms were compared.ResultsGood agreement was achieved overall, with deviations for the target volumes typically within 2% (D95), excepted for small lung tumors (17 cm3) where a maximum deviation of 4.4% was observed for D95. The results were consistent with previously reported values for static field widths.ConclusionsFor the clinical cases considered in the present study, the introduction of TomoEdge did not impact significantly the accuracy of the computed dose distributions.  相似文献   

7.
8.
The kinematics of the human foot complex have been investigated to understand the weight bearing mechanism of the foot. This study aims to investigate midtarsal joint locking during walking by noninvasively measuring the movements of foot bones using a high-speed bi-planar fluoroscopic system. Eighteen healthy subjects volunteered for the study; the subjects underwent computed tomography imaging and bi-planar radiographs of the foot in order to measure the three-dimensional (3D) midtarsal joint kinematics using a 2D-to-3D registration method and anatomical coordinate system in each bone. The relative movements on bone surfaces were also calculated in the talonavicular and calcaneocuboid joints and quantified as surface relative velocity vectors on articular surfaces to understand the kinematic interactions in the midtarsal joint. The midtarsal joint performed a coupled motion in the early stance to pronate the foot to extreme pose in the range of motion during walking and maintained this pose during the mid-stance. In the terminal stance, the talonavicular joint performed plantar-flexion, inversion, and internal rotation while the calcaneocuboid joint performed mainly inversion. The midtarsal joint moved towards an extreme supinated pose, rather than a minimum motion in the terminal stance. The study provides a new perspective to understand the kinematics and kinetics of the movement of foot bones and so-called midtarsal joint locking, during walking. The midtarsal joint continuously moved towards extreme poses together with the activation of muscle forces, which would support the foot for more effective force transfer during push-off in the terminal stance.  相似文献   

9.
Computer-aided technologies have allowed new 3D modelling capabilities and engineering analyses based on experimental and numerical simulation. It has enormous potential for product development, such as biomedical instrumentation and implants. However, due to the complex shapes of anatomical structures, the accuracy of these technologies plays an important key role for adequate and accurate finite element analysis (FEA).

The objective of this study was to determine the influence of the geometry variability between two digital models of a human model of the mandible. Two different shape acquisition techniques, CT scan and 3D laser scan, were assessed. A total of 130 points were controlled and the deviations between the measured points of the physical and 3D virtual models were assessed.

The results of the FEA study showed a relative difference of 20% for the maximum displacement and 10% for the maximum strain between the two geometries.  相似文献   

10.
We examined the mandibles of 377 individuals representing 25 species, 12 genera, 5 tribes, and 2 subfamilies of the Loricariidae, a species‐rich radiation of detritivorous–herbivorous neotropical freshwater fishes distinguished by having a ventral oral disk and jaws specialized for surface attachment and benthic feeding. Loricariid mandibles are transversely oriented and bilaterally independent, each rotating predominantly around its long axis, although rotational axes likely vary with mandibular geometry. On each mandible, we measured three traditional and three novel morphological parameters chosen primarily for their functional relevance. Five parameters were linear distances and three of these were analogous to traditional teleost in‐ and out‐levers for mandibular adduction. The sixth parameter was insertion area of the combined adductor mandibulae muscle (AMarea), which correlated with adductor mandibulae volume across a subset of taxa and is interpreted as being proportional to maximum force deliverable to the mandible. Multivariate analysis revealed distributions of phylogenetically diagnosed taxonomic groupings in mandibular morphospace that are consistent with an evolutionary pattern of basal niche conservatism giving rise to multiple adaptive radiations within nested clades. Correspondence between mandibular geometry and function was explored using a 3D model of spatial relationships among measured parameters, potential forces, and axes of rotation. By combining the model with known loricariid jaw kinematics, we developed explicit hypotheses for how individual parameters might relate to each other during kinesis. We hypothesize that the ratio [AMarea/tooth row length2] predicts interspecific variation in the magnitude of force entering the mandible per unit of substrate contacted during feeding. Other newly proposed metrics are hypothesized to predict variation in aspects of mandibular mechanical advantage that may be specific to Loricariidae and perhaps shared with other herbivorous and detritivorous fishes. 2011. © 2011Wiley Periodicals, Inc.  相似文献   

11.
Convergent evolution in similar environments constitutes strong evidence of adaptive evolution. Transported with people around the world, house mice colonized even remote areas, such as Sub‐Antarctic islands. There, they returned to a feral way of life, shifting towards a diet enriched in terrestrial macroinvertebrates. Here, we test the hypothesis that this triggered convergent evolution of the mandible, a morphological character involved in food consumption. Mandible shape from four Sub‐Antarctic islands was compared to phylogeny, tracing the history of colonization, and climatic conditions. Mandible shape was primarily influenced by phylogenetic history, thus discarding the hypothesis of convergent evolution. The biomechanical properties of the jaw were then investigated. Incisor in‐lever and temporalis out‐lever suggested an increase in the velocity of incisor biting, in agreement with observations on various carnivorous and insectivorous rodents. The mechanical advantage related to incisor biting also revealed an increased functional performance in Sub‐Antarctic populations, and appears to be an adaptation to catch prey more efficiently. The amount of change involved was larger than expected for a plastic response, suggesting microevolutionary processes were evolved. This study thus denotes some degree of adaptive convergent evolution related to changes in habitat‐related changes in dietary items in Sub‐Antarctic mice, but only regarding simple, functionally relevant aspects of mandible morphology.  相似文献   

12.
It has been puzzled that in spite of its single-headed structure, myosin-IX shows the typical character of processive motor in multi-molecule in vitro motility assay, because this cannot be explained by hand-over-hand mechanism of the two-headed processive myosins. Here, we show direct evidence of the processive movement of myosin-IX using two different single molecule techniques. Using optical trap nanometry, we found that myosin-IX takes several large ( approximately 20nm) steps before detaching from an actin filament. Furthermore, we directly visualized the single myosin-IX molecules moving on actin filaments for several hundred nanometers without dissociating from actin filament. Since myosin-IX processively moves without anchoring the neck domain, the result suggests that the neck tilting is not involved for the processive movement of myosin-IX. We propose that the myosin-IX head moves processively along an actin filament like an inchworm via a unique long and positively charged insertion in the loop 2 region of the head.  相似文献   

13.
We describe and interpret a posterior mandibular symphysis of a very large azhdarchid pterosaur. The specimen LPB (FGGUB ) R.2347 exhibits a series of morphological characters present in both azhdarchid and tapejarid pterosaurs, suggesting a more basal position within the clade Azhdarchidae. This fossil was collected from Maastrichtian continental deposits near V?lioara in the Ha?eg Basin, Romania, but cannot be confidently referred to the contemporaneous giant Hatzegopteryx thambema, also from V?lioara, due to the absence of overlapping skeletal elements. Remarkably, this mandibular symphysis shares a number of features the smaller azhdarchoid Bakonydraco galaczi from the Santonian of Hungary. Additional comparisons with previously described large‐sized azhdarchid mandibles indicate a certain degree of morphological and probably ecological disparity within the group. This specimen represents the largest pterosaur mandible ever found and provides insights into the anatomy of the enigmatic giant pterosaurs.  相似文献   

14.
The development and evolution of the rodent mandible have been studied in depth in recent years. The mandible is a complex structure because it consists of six morphogenetic components formed by different condensations of mesenchymal cells. Using recent techniques for the geometric analysis of shape, we have combined developmental information with a powerful quantification of shape variation and an independent estimate of phylogeny (molecular data) to assess the evolutionary patterns of shape change in mandibles of the rodent genus Trinomys . In general, the major trends in shape variation did not agree with the expected phylogenetic pattern. However, for small-scale morphological differences, one species ( T. yonenagae ) was responsible for the lack of association between morphology and molecular divergence. This species is genetically similar to but morphologically different from other Trinomys . The coronoid process was considered to be the most conservative morphogenetic component in the mandible.  相似文献   

15.
Eucalyptocrinites is one the most common and familiar mid‐Palaeozoic crinoids and is the exemplar of a form with dendritic radicular holdfasts. American museums have hundreds of specimens of Eucalyptocrinites holdfasts from the Silurian Waldron Shale of Indiana and Kentucky, USA. The radix (‘root’) system of Eucalyptocrinites can be described as comprised of links (branches) that meet at nodes. Measured values include the x‐ and y‐coordinates of the nodes, the distances of the nodes from the stem, the angles between branches, branch length and branch width. Rose diagrams show clearly that the root systems are not isotropic but have preferred orientations. Branch angles are highly variable, but cluster around 60 degrees. Branch lengths and distal branch widths are relatively constant, but branch width increases variably towards the column. The branching pattern can be modelled as a self‐similar (‘fractal’) structure. Several specimens labelled as Eucalyptocrinites show a distinct fivefold symmetry without branching and very likely represent a different taxon. The Eucalyptocrinites radix system, along with the probably stiff dististele, most likely functioned as a rigid plate that resisted rotational forces due to currents acting on the crown. Upstream radicles experienced tension, whereas downstream roots were compressed. This force distribution may explain the observed anisotropies in radix morphology. The ‘roots’ of Eucalyptocrinites and other crinoids have long been compared with the root systems of plants. Although there are superficial similarities, there are fundamental differences.  相似文献   

16.
Mandibles of yellow‐necked mouse (Apodemus flavicollis) were used to explore modularity. We tested a biological hypothesis that two separate modules (alveolar region and ascending ramus) can be recognized within the mandible. As a second research goal, we compared two different morphometric procedures under the assumption that methodological approaches that use either geometric or traditional morphometric techniques should give similar results. Besides confirmation of the predicted hypothesis of modularity, the application of both approaches revealed that: (i) modularity was somewhat more evident when it was analysed on the asymmetric (fluctuating asymmetry, FA) than on the symmetric (individual variation) component of variation; (ii) there is correspondence in the patterns of individual variation and FA, which indicates that integration of mandibular traits among individuals is primarily due to direct developmental interactions; and (iii) allometry does not obscure the hypothesized modularity for individual variation or for FA. In addition, traditional morphometric method allowed us to check whether allometry influenced each module to the same extent and to conclude that the ascending ramus is more heavily influenced by general size than the alveolar region. In studies of modularity, differences in methods can lead to discrepancies in the results, and therefore, some caution is required when comparing findings from different investigations. The substantial agreement between our results provides evidence that, when considering two‐module organization of the mouse mandible, direct comparison among studies that use the methods applied herein is, in great part, reliable.  相似文献   

17.
The jaws of the new polychaetaspid polychaete, Oenonites? honki, from the Silurian of Gotland, Sweden, differ from most Palaeozoic polychaete jaws. They exhibit enigmatic microstructural features in that they appear rough and give a corroded, or weathered impression. The altered microstructure of the jaws suggests a jaw chemistry and/or composition differing in some way from that of the co‐occurring polychaete taxa. The jaws appear to have limited preservational potential and/or were particularly susceptible to secondary processes, resulting in microstructural alteration. Commonly, a row of distinct pits occurs on the outer face, especially of the first right maxillae (MIr). Because these pits are interpreted as associated with the dentary, the term ‘denticle marks’ is suggested. The pits may be the result of primary or secondary physical wear, or, more probably, secondary chemical alteration of localized mineral deposits. The primary function of such mineral deposits was to harden those parts of the surface that were exposed to great stress. The restricted occurrence of O.? honki, coupled with occasional increases in abundance (especially in the Halla Formation, unit b), indicates a preference for shallow marine, high‐energy environments, particularly in reefal pockets with calcilutitic sediments. Highest frequency coincides with faunas characteristically containing a few labidognath species also displaying high frequencies.  相似文献   

18.
19.
为筛选裸花紫珠治疗烧烫伤的活性部位,并初步研究其作用机制。实验采用90°C热水造成大鼠烫伤模型。以伤口面积大小,伤口性状,如颜色、软硬程度等为指标,通过宏观和微观检测筛选裸花紫珠治疗烧烫伤的活性部位。采用ELISA和Western blot等方法初步研究其作用机制。进入组织增生重塑期后,石油醚组相较其它各组,伤口愈合最为显著;在组织增生最后的成熟期,石油醚组的表皮和真皮恢复得最好,伤疤最小。石油醚组的VEGF浓度在早期出现了明显的上调;在第21天时,TGF-β1的表达水平最低。裸花紫珠治疗烧烫伤的活性部位初步推测在石油醚层,其治疗烧烫伤作用机制可能是早期裸花紫珠使VEGF上调,在后期下调了TGF-β1以达到。本研究为裸花紫珠治疗烧烫伤的进一步研究和应用提供依据。  相似文献   

20.
AIMS: The aim of this study was to investigate the role of proteases in Bacillus spp. of rhizobacteria in suppressing nematode populations and to understand their mechanism of action. METHODS AND RESULTS: Rhizobacteria with nematicidal activity were isolated from soil samples of five root knot nematode-infested farms. Among these strains, nematotoxicities of Bacillus strains were intensively analysed. Further assays of nematicidal toxins from Bacillus sp. strain RH219 indicated an extracellular cuticle-degrading protease Apr219 was an important pathogenic factor. The Apr219 shared high similarity with previously reported cuticle-degrading proteases from Brevibacillus laterosporus strain G4 and Bacillus sp. B16 (Bacillus nematocida). The cuticle-degrading protease genes were also amplified from four other nematicidal Bacillus strains isolated from the rhizosphere. In addition to Apr219, a neutral protease Npr219 from Bacillus sp. RH219 was also investigated for activity against nematodes. CONCLUSIONS: The wide distribution of cuticle-degrading proteases in Bacillus strains with nematicidal activity suggested that these enzymes likely play an important role in bacteria-nematode-plant-environment interactions and that they may serve as important nematicidal factors in balancing nematode populations in the soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Increased understanding of the mechanism of action of Bacillus spp. against nematodes could potentially enhance the value of these species as effective nematicidal agents and develop new biological control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号