首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Binding to Golgi membranes of ADP ribosylation factor 1 (ARF1) is the first event in the initiation of COPI coat assembly. Based on binding studies, a proteinaceous receptor has been proposed to be critical for this process. We now report that p23, a member of the p24 family of Golgi-resident transmembrane proteins, is involved in ARF1 binding to membranes. Using a cross-link approach based on a photolabile peptide corresponding to the cytoplasmic domain of p23, the GDP form of ARF1 (ARF1-GDP) is shown to interact with p23 whereas ARF1-GTP has no detectable affinity to p23. The p23 binding is shown to localize specifically to a 22 amino acid C-terminal fragment of ARF1. While a monomeric form of a non-photolabile p23 peptide does not significantly inhibit formation of the cross-link product, the corresponding dimeric form does compete efficiently for this interaction. Consistently, the dimeric p23 peptide strongly inhibits ARF1 binding to native Golgi membranes suggesting that an oligomeric form of p23 acts as a receptor for ARF1 before nucleotide exchange takes place.  相似文献   

2.
We have developed a reconstituted model system to study the interaction of the Golgi membranes isolated from rabbit liver with taxol-stabilized bovine-brain microtubules without microtubule-associated proteins (MAPs). The Golgi membranes are associated with microtubules. The sheets of vesicles and the membranous tubules are observed along microtubules by direct visualization using differential-interference-contrast, dark field, or fluorescence microscopy. The monoclonal antibody against Golgi membranes suggests that the Golgi membranes, but not the contaminating vesicles, are interacting with microtubules. The degree of association is assayed quantitatively using rhodamine-labeled microtubules after separation of the complex from unbound microtubules by centrifugation upon sucrose gradient. The association is inhibited by crude MAPs, purified MAP2, or 1.0 mM ATP. However, the association neither requires the cytosol from rat liver or bovine brain nor N-ethylmaleimide, brefeldin A, or GTP-gamma-S. The association is mediated by trypsin-sensitive peripheral protein(s) on the Golgi membranes.  相似文献   

3.
The fate of the catalytic subunit of the Escherichia coli heat labile toxin (LTA(1)) was studied after expression in mammalian cells to assess the requirement for ADP-ribosylation factor (ARF) binding to localization and toxicity and ability to compete with endogenous ARF effectors. A progression in LTA(1) localization from cytosol to binding Golgi stacks to condensation of Golgi membranes was found to correlate with the time and level of LTA(1) expression. At the highest levels of LTA(1) expression the staining of LTA and both extrinsic and lumenal Golgi markers all became diffuse, in a fashion reminiscent of the actions of brefeldin A. Thus, LTA(1) binds to the Golgi and can alter its morphology in two distinct ways. However, point mutants of LTA(1) that are defective in the ability to bind activated ARF were also unable to bind Golgi membranes or modify Golgi morphology. Co-expression of mutants of ARF3 that regained binding to these same mutant LTA(1) proteins restored the localization and activities of the toxin. Thus, binding to ARF is required both for the localization of the toxin to the Golgi and for effects on Golgi membranes. A correlation was also seen between the ability of LTA mutants to bind ARF and the increase in cellular cAMP levels. These results demonstrate the importance of ARF binding to the toxicity and cellular effects of the ADP-ribosylating bacterial toxin and reveal that mutants defective in binding ARF retain basal ADP-ribosylation activity but are the least toxic LTA(1) mutants yet described, making them the best candidates for development as mucosal adjuvants.  相似文献   

4.
ADP-ribosylation of histones and non-histone nuclear proteins was studied in isolated nuclei during the naturally synchronous cell cycle of Physarum polycephalum. Aside from ADP-ribosyltransferase (ADPRT) itself, histones and high mobility group-like proteins are the main acceptors for ADP-ribose. The majority of these ADP-ribose residues is NH2OH-labile. ADP-ribosylation of the nuclear proteins is periodic during the cell cycle with maximum incorporation in early to mid G2-phase. In activity gels two enzyme forms with Mr of 115,000 and 75,000 can be identified. Both enzyme forms are present at a constant ratio of 3:1 during the cell cycle. The higher molecular mass form cannot be converted in vitro to the low molecular mass form, excluding an artificial degradation during isolation of nuclei. The ADPRT forms were purified and separated by h.p.l.c. The low molecular mass form is inhibited by different ADPRT inhibitors to a stronger extent and is the main acceptor for auto-ADP-ribosylation. The high molecular mass form is only moderately auto-ADP-ribosylated.  相似文献   

5.
Rhodopsin (P, lambda max 480 nm) of blowfly photoreceptors R1-6 is converted by light into a thermally stable metarhodopsin (M, lambda max 565 nm). In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane. ADP-ribosylation of the 41-kDa protein is catalyzed by cholera toxin and is inhibited by P----M conversion. The 41-kDa protein might represent the alpha-subunit of the G-protein, proposed to be part of the phototransduction mechanism [Blumenfeld, A. et al. (1985) Proc. Natl Acad. Sci. USA 82, 7116-7120]. P----M conversion leads to phosphorylation of opsin at multiple binding sites: up to 4 mol phosphate are bound/mol M formed. Dephosphorylation of the phosphate binding sites is induced by photoconversion of M to P. High levels of calcium (2 mM) inhibit phosphorylation of M and increase dephosphorylation of P. Protein patterns obtained by sodium dodecyl sulfate gel electrophoresis of irradiated retina membranes show an increased incorporation of label from [gamma-32P]ATP also into protein bands of 48 kDa, 68 kDa and 200 kDa. Binding studies reveal that in the case of the 48-kDa protein this effect is primarily due to a light-induced binding of the protein to the photoreceptor membrane. The binding of the 48-kDa phosphoprotein is reversible: after M----P conversion the protein becomes extractable by isotonic buffers. These data suggest that in rhabdomeric photoreceptors of invertebrates light-activation of rhodopsin is coupled to an enzyme cascade in a similar way as in the ciliary photoreceptors of vertebrates, although there may be differences, e.g. in the type of G-protein which mediates between the activated state of metarhodopsin and a signal-amplifying enzyme reaction.  相似文献   

6.
The characteristics of ADP-ribosyltransferase activity in skeletal muscle membranes have been studied. The membrane enzymes can ADP-ribosylate exogenous substrates such as guanylhydrazones, polyarginine, lysozyme, and histones. The properties of the enzyme are investigated by using diethylaminobenzylidineaminoguanidine as a model substrate. Incubation of the membranes with [32P]adenylate-labeled NAD results in the labeling of a number of cellular proteins. Magnesium ions, detergents, and diethylaminobenzylidineaminoguanidine stimulated the ADP-ribosylation of membrane proteins, whereas L-arginine methyl ester and arginine inhibited ADP-ribosylation. The labeling of specific proteins in the sarcoplasmic reticulum and glycogen pellet is influenced significantly by detergents, nucleotides, and thiols. The hydroxylamine sensitivity of the ADP-ribose linkage in the membrane proteins is similar to that reported for (ADP-ribose)-arginine linkage. Snake venom phosphodiesterase digestion of the ADP-ribosylated membranes produces 5'-AMP as the major acid-soluble digestion product. The results suggest that the primary mode of modification is mono(ADP-ribosyl)ation. The ADP-ribosyltransferase activity in the membrane preparations is not extracted under conditions used for solubilization of extrinsic proteins, suggesting that the activity is associated with some integral membrane protein.  相似文献   

7.
The Golgi apparatus is a stack of compartments that serves as a central junction for membrane traffic, with carriers moving through the stack as well as arriving from, and departing toward, many other destinations in the cell. This requires that the different compartments in the Golgi recruit from the cytosol a distinct set of proteins to mediate accurate membrane traffic. This recruitment appears to reflect recognition of small GTPases of the Rab and Arf family, or of lipid species such as PtdIns(4)P and diacylglycerol, which provide a unique "identity" for each compartment. Recent work is starting to reveal the mechanisms by which these labile landmarks are generated in a spatially restricted manner on specific parts of the Golgi.  相似文献   

8.
The effects of puromycin on galactosyltransferase from four sources, rat liver and lactating sheep mammary Golgi membranes, bovine colostrum and human serum have been investigated. We do not find that the synthesis of N-acetyllactosamine is much inhibited, even in the presence of 3mM puromycin. This is in contrast to previously reported results for rat liver Golgi membranes. We interpret the low level of inhibition observed in terms of pH effects.  相似文献   

9.
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.  相似文献   

10.
Glycosyltransferases in the Golgi membranes of onion stem   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [(14)C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine alpha-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [(14)C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed.  相似文献   

11.
We have developed an in vitro assay for characterizing the binding of elements of the Golgi complex to microtubules. The binding assay comprises three distinct components, Golgi elements purified from Vero cells by subcellular fractionation, taxol-polymerized tubulin from bovine brain coupled to magnetic beads and cytosol from HeLa cells. Binding of Golgi elements to microtubules is quantitated by measuring the activity of the Golgi marker enzyme, galactosyltransferase, associated with the microtubule-coated beads retrieved with a magnet. In the presence of cytosol, 35 to 45% of the total input of galactosyltransferase activity (Golgi elements) bind to microtubules; only 3% of the Golgi elements bind to microtubules, however, in the absence of cytosolic factors. This binding is saturable at a cytosol concentration of approximately 5 mg/ml or at a high input of Golgi elements. Cytosol-stimulated binding of Golgi elements to microtubules is decreased to less than 15% when cytosol is pretreated with 2 mM N-ethylmaleimide (NEM) and it is abolished when cytosolic proteins are inactivated by heat or when microtubules have been coated with heat-stable microtubule-associated proteins (MAPs). Trypsinization of the membranes of the Golgi elements abolishes their ability to bind to microtubules. Furthermore, inactivation of cytoplasmic dynein by UV/vanadate treatment does not affect the binding. This suggests that the interaction of Golgi elements with microtubules depends on NEM-sensitive cytosolic factors and membrane-associated receptors, but not on the microtubule-based motor protein cytoplasmic dynein.  相似文献   

12.
ADP-ribosylation of isolated rat islets of Langerhans   总被引:1,自引:0,他引:1  
A rapid and reproducible radioimmunoassay method was developed for rat atrial natriuretic factor (ANF)-IV. The method is also applicable to human atrial peptide. ANF was detected in rat hypothalamus (5.03 pmoles/g tissue), right (86.8 pmoles/mg tissue) and left atria (52.5 pmoles/mg tissue), and plasma (156 fmoles/ml). After high salt intake immunoreactive ANF in atria and plasma increased significantly, while a significant decrease was observed in hypothalamus. Gel chromatography revealed high and low molecular weight ANF in atria and hypothalamus while only a low molecular weight form was found in plasma.  相似文献   

13.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

14.
Although the preparation of rat liver Golgi apparatus isolated by our method contains appreciable activities of NADH- and NADPH-cytochrome c reductases and glucose-6-phosphatase, these enzymes as well as thiamine pyrophosphatase of the extensively fragmented Golgi fraction are partitioned in aqueous polymer two-phase systems quite differently from those associated with microsomes. Similarly, the partition patterns of acid phosphatase and 5'-nucleotidase of the Golgi fragments differ from those of homogenized lysosomes and plasma membrane, respectively. It is concluded that most, if not all, of these marker enzymes in the Golgi fraction cannot be ascribed to contamination by the non-Golgi organelles. In sucrose density gradient centrifugation the NADH- and NADPH-cytochrome c reductase activities of the Golgi fraction behave identically with galactosyltransferase but differently from the reductase activities of microsomes, again indicating that the reductases are inherently associated with the Golgi apparatus. NADPH-cytochrome c reductase of the Golgi preparation is immunologically identical with that of microsomes. The marker enzymes mentioned above and galactosyltransferase behave differently from one another when the Golgi fragments are subjected to partitioning in aqueous polymer two-phase systems, suggesting that these enzymes are not uniformly distributed in the Golgi apparatus structure.  相似文献   

15.
Incubation of turkey erythrocyte membranes with cholera toxin and [32P]NAD caused toxin-dependent incorporation of 32P into a 42,000 Mr peptide which could be distinguished from toxin-independent 32P incorporation into other membrane proteins. The radiolabeled 42,000 Mr peptide could be extracted from the membranes using Lubrol PX. When toxin-treated membranes were incubated with isoproterenol and GMP before detergent solubilization, the 42,000 Mr labeled peptide was adsorbed by GTP-γ-agarose which, with the same conditions, adsorbed the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide and guanine nucleotide regulatory protein activity were coeluted from the affinity matrix by guanylyl-β,γ-imidodiphosphate, GDP, and GMP. Guanosine 5′-O-(2-thiodiphosphate), an analog of GDP which blocks guanine nucleotide- and fluoride-stimulated adenylate cyclase activity, caused elution of labeled peptide which exhibited no regulatory protein activity. Our data support the view that the 42,000 Mr peptide is part of the adenylate cyclase guanine nucleotide regulatory protein. The labeled peptide allows identification of both active and inactive regulatory protein and should be useful in monitoring the purification of the regulatory protein from turkey erythrocytes.  相似文献   

16.
We report a 39 kDa substrate for cholera and pertussis toxins is present in D. discoideum membranes. This protein did not co-migrate with alpha subunits of either Gs (45 kDa and 52 kDa) or Gi (41 kDa) from control mammalian cells. The presence of GTP or its non-hydrolyzable analogs enhanced the ADP-ribosylation in response to cholera toxin, but did not significantly alter ADP-ribosylation by pertussis toxin. Divalent cations inhibited the ADP-ribosylation by both toxins. The possible association of this novel G-protein with D. discoideum adenylate cyclase may underlie some of the unique regulatory features of this enzyme. Alternatively, this G-protein may regulate one of several other cellular responses mediated by the cAMP receptor.  相似文献   

17.
A new alpha-D-mannosidase occurring in Golgi membranes   总被引:13,自引:0,他引:13  
  相似文献   

18.
Arabinoxylan arabinosyltransferase (AX-AraT) activity was investigated using microsomes and Golgi vesicles isolated from wheat (Triticum aestivum) seedlings. Incubation of microsomes with UDP-[(14)C]-beta-L-arabinopyranose resulted in incorporation of radioactivity into two different products, although most of the radioactivity was present in xylose (Xyl), indicating a high degree of UDP-arabinose (Ara) epimerization. In isolated Golgi vesicles, the epimerization was negligible, and incubation with UDP-[(14)C]Ara resulted in formation of a product that could be solubilized with proteinase K. In contrast, when Golgi vesicles were incubated with UDP-[(14)C]Ara in the presence of unlabeled UDP-Xyl, the product obtained could be solubilized with xylanase, whereas proteinase K had no effect. Thus, the AX-AraT is dependent on the synthesis of unsubstituted xylan acting as acceptor. Further analysis of the radiolabeled product formed in the presence of unlabeled UDP-Xyl revealed that it had an apparent molecular mass of approximately 500 kD. Furthermore, the total incorporation of [(14)C]Ara was dependent on the time of incubation and the amount of Golgi protein used. AX-AraT activity had a pH optimum at 6, and required the presence of divalent cations, Mn(2+) being the most efficient. In the absence of UDP-Xyl, a single arabinosylated protein with an apparent molecular mass of 40 kD was radiolabeled. The [(14)C]Ara labeling became reversible by adding unlabeled UDP-Xyl to the reaction medium. The possible role of this protein in arabinoxylan biosynthesis is discussed.  相似文献   

19.
The Golgi-membrane vesicles present in particulate preparations of lactating rat mammary gland were biosynthetically loaded with [14C]lactose. This lactose was effectively retained by particles sedimented after exposure to 0.25 M-disaccharide, but was partly lost after exposure to 0.25 M-glucose or other solutes of similar size. Loss of lactose was time-, concentration- and temperature-dependent and varied with the solute structure. This behaviour is ascribed to the presence of protein in the Golgi membrane, forming a specific carrier or channel that serves to supply glucose for lactose synthesis.  相似文献   

20.
《The Journal of cell biology》1993,122(6):1197-1206
We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are depolymerized by IQ treatment of NRK cells. We provide evidence that IQ breaks down Golgi membranes regardless of the state of cytoplasmic microtubules. This is evident from our findings that Golgi membranes break down with IQ treatment in the presence of taxol stabilized microtubules. Moreover, in cells where the microtubules are first depolymerized by microtubule disrupting agents which cause the Golgi stacks to separate from one another and scatter throughout the cytoplasm, treatment with IQ causes further breakdown of these Golgi stacks into VGMs. Thus, IQ breaks down Golgi membranes independently of its effect on cytoplasmic microtubules. Upon removal of IQ from NRK cells, both microtubules and Golgi membranes reassemble. The reassembly of Golgi membranes, however, takes place in two sequential steps: the first is a microtubule independent process in which the VGMs fuse together to form stacks of Golgi cisternae. This step is followed by a microtubule-dependent process by which the Golgi stacks are carried to their perinuclear location in the cell. In addition, we have found that IQ has no effect on the structural organization of Golgi membranes at 16 degrees C. However, VGMs generated by IQ are capable of fusing and assembling into stacks of Golgi cisternae at 16 degrees C. This is in contrast to the cells recovering from BFA treatment where, after removal of BFA at 16 degrees C, resident Golgi enzymes fail to exit the ER, a process presumed to require the formation of vesicles. We propose that at 16 degrees C there may be general inhibition in the process of vesicle formation, whereas the process of vesicle fusion is not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号