首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal toxin brefeldin A (BFA) dissociates coat proteins from Golgi membranes, causes the rapid disassembly of the Golgi complex and potently stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa. These proteins have been identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a novel guanine nucleotide binding protein (BARS-50), respectively. The role of ADP-ribosylation in mediating the effects of BFA on the structure and function of the Golgi complex was analyzed by several approaches including the use of selective pharmacological blockers of the reaction and the use of ADP-ribosylated cytosol and/or enriched preparations of the BFA-induced ADP-ribosylation substrates, GAPDH and BARS-50.A series of blockers of the BFA-dependent ADP-ribosylation reaction identified in our laboratory inhibited the effects of BFA on Golgi morphology and, with similar potency, the ADP-ribosylation of BARS-50 and GAPDH. In permeabilized RBL cells, the BFA-dependent disassembly of the Golgi complex required NAD+ and cytosol. Cytosol that had been previously ADP-ribosylated (namely, it contained ADP-ribosylated GAPDH and BARS-50), was instead sufficient to sustain the Golgi disassembly induced by BFA.Taken together, these results indicate that an ADP-ribosylation reaction is part of the mechanism of action of BFA and it might intervene in the control of the structure and function of the Golgi complex.  相似文献   

2.
PDMP (D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and PPMP (D,L-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol), inhibitors of glucosylceramide synthesis, blocked brefeldin A (BFA)- and nordihydroguaiaretic acid-induced dispersal of the Golgi and trans Golgi network, and Golgi-derived vesicles were retained in the juxtanuclear region. PDMP and PPMP did not stabilize microtubules but blocked nocodazole-induced extensive fragmentation and dispersal of the Golgi, and large Golgi vesicles were retained in the juxtanuclear region. PPMP is a stronger inhibitor of glucosylceramide synthesis than PDMP, but PDMP showed a stronger activity against BFA-induced retrograde membrane flow. However, PPMP showed a stronger activity for Golgi disruption and inhibition of anterograde trafficking from the endoplasmic reticulum, and rebuilding of the Golgi architecture. Cumulatively, these results suggest that sphingolipid metabolism is implicated in maintenance of the Golgi architecture and anterograde membrane flow from the endoplasmic reticulum but not in Golgi dispersal induced by BFA.  相似文献   

3.
BIG2 is one of the guanine nucleotide exchange factors (GEFs) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and AP-1 coat protein complexes and GGA proteins. Brefeldin A (BFA), an ARF-GEF inhibitor, causes redistribution of the coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). We have recently shown that BIG2 overexpression blocks BFA-induced redistribution of the AP-1 complex but not TGN membrane tubulation. In the present study, we constructed a dominant-negative BIG2 mutant and found that when expressed in cells it induced redistribution of AP-1 and GGA1 and membrane tubulation of the TGN. By contrast, the mutant did not induce COPI redistribution or Golgi membrane tubulation. These observations indicate that BIG2 is involved in trafficking from the TGN by regulating membrane association of AP-1 and GGA through activating ARF.  相似文献   

4.
BIG2 is a guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and adaptor protein (AP)-1 coat protein complexes. A fungal metabolite, brefeldin A (BFA), inhibits ARF-GEFs and leads to redistribution of coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). To investigate the function of BIG2, we examined the effects of BIG2-overexpression on the BFA-induced redistribution of ARF, coat proteins, and organelle markers. The BIG2 overexpression blocked BFA-induced redistribution from membranes of ARF1 and the AP-1 complex but not that of the COPI complex. These observations indicate that BIG2 is implicated in membrane association of AP-1, but not that of COPI, through activating ARF. Furthermore, not only BIG2 but also ARF1 and AP-1 were found as queues of spherical swellings along the BFA-induced membrane tubules emanating from the TGN. These observations indicate that BFA-induced AP-1 dissociation from TGN membranes and tubulation of TGN membranes are not coupled events and suggest that a BFA target other than ARF-GEFs exists in the cell.  相似文献   

5.
We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus.  相似文献   

6.
In this study, we show that an inhibitor of sphingolipid biosynthesis, d,l-threo-1-phenyl-2- decanoylamino-3-morpholino-1-propanol (PDMP), inhibits brefeldin A (BFA)-induced retrograde membrane transport from Golgi to endoplasmic reticulum (ER). If BFA treatment was combined with or preceded by PDMP administration to cells, disappearance of discrete Golgi structures did not occur. However, when BFA was allowed to exert its effect before PDMP addition, PDMP could not “rescue” the Golgi compartment.Evidence is presented showing that this action of PDMP is indirect, which means that the direct target is not sphingolipid metabolism at the Golgi apparatus. A fluorescent analogue of PDMP, 6-(N-[7-nitro-2,1,3-benzoxadiazol-4-yl]amino)hexanoyl-PDMP (C6-NBD-PDMP), did not localize in the Golgi apparatus. Moreover, the effect of PDMP on membrane flow did not correlate with impaired C6-NBD-sphingomyelin biosynthesis and was not mimicked by exogenous C6-ceramide addition or counteracted by exogenous C6-glucosylceramide addition. On the other hand, the PDMP effect was mimicked by the multidrug resistance protein inhibitor MK571.The effect of PDMP on membrane transport correlated with modulation of calcium homeostasis, which occurred in a similar concentration range. PDMP released calcium from at least two independent calcium stores and blocked calcium influx induced by either extracellular ATP or thapsigargin. Thus, the biological effects of PDMP revealed a relation between three important physiological processes of multidrug resistance, calcium homeostasis, and membrane flow in the ER/ Golgi system.  相似文献   

7.
C. L. Jackson  F. Kepes 《Genetics》1994,137(2):423-437
Brefeldin A (BFA) blocks protein transport out of the Golgi apparatus and causes disassembly of this organelle in mammalian cells. The primary effect of BFA is the release of the non-clathrin coat from Golgi membranes and vesicles. We sought to elucidate the mechanism of BFA action using a genetic approach in Saccharomyces cerevisiae. When an erg6 S. cerevisiae strain is treated with BFA, cell growth is arrested, cells lose viability and secretory proteins are accumulated in the endoplasmic reticulum (ER) and early Golgi compartments. We demonstrate that the mutant sec21 (defective in the S. cerevisiae homolog of γ-COP, a non-clathrin coat protein) is supersensitive to BFA. Hence BFA probably affects the same processes in S. cerevisiae as in mammalian cells. We used a multicopy genomic DNA library to search for multicopy suppressors of BFA-induced lethality. We identified one such gene, BFR1, that, in addition, partially suppresses the growth and secretion defects of the ER-to-Golgi secretion mutant sec17. A bfr1-Δ1::URA3 deletion strain is viable, but has defects in cell morphology and nuclear segregation, and the mutation accentuates the growth and secretion defects of a sec21 mutant.  相似文献   

8.
The Golgi complex functions in transport of molecules from the endoplasmic reticulum (ER) to the plasma membrane and other distal organelles as well as in retrograde transport to the ER. The fungal metabolite brefeldin A (BFA) promotes dissociation of ADP-ribosylation-factor-1 (ARF1) and the coatomer protein complex-I (COP-I) from Golgi membranes, followed by Golgi tubulation and fusion with the ER. Here we demonstrate that the cationic ionophore monensin inhibited the BFA-mediated Golgi redistribution to the ER without interfering with ARF1 and COP-I dissociation. Preservation of a perinuclear Golgi despite COP-I and ARF1 dissociation enables addressing the involvement of these proteins in anterograde ER to Golgi transport. The thermo-reversible folding mutant of vesicular stomatitis virus G protein (VSVGtsO45) was retained in the ER in the presence of both monensin and BFA, thus supporting ARF1/COP-I participation in ER-exit processes. Live-cell imaging revealed that BFA-induced Golgi tubulation persisted longer in the presence of monensin, suggesting that monensin inhibits tubule fusion with the ER. Moreover, monensin also augmented Golgi-derived tubules that contained the ER-Golgi-intermediate compartment marker, p58, in the absence of BFA, signifying the generality of this effect. Taken together, we propose that monensin inhibits membrane fusion processes in the presence or absence of BFA.  相似文献   

9.
The release of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A (BFA) action, preceding the movement of Golgi membrane into the ER. ATP depletion also causes the reversible redistribution of the 110-kD protein from Golgi membrane into the cytosol, although no Golgi disassembly occurs. To further define the effects of BFA on the association of the 110-kD protein with the Golgi apparatus we have used filter perforation techniques to produce semipermeable cells. All previously observed effects of BFA, including the rapid redistribution of the 110-kD protein and the movement of Golgi membrane into the ER, could be reproduced in the semipermeable cells. The role of guanine nucleotides in this process was investigated using the nonhydrolyzable analogue of GTP, GTP gamma S. Pretreatment of semipermeable cells with GTP gamma S prevented the BFA-induced redistribution of the 110-kD protein from the Golgi apparatus and movement of Golgi membrane into the ER. GTP gamma S could also abrogate the observed release of the 110-kD protein from Golgi membranes which occurred in response to ATP depletion. Additionally, when the 110-kD protein had first been dissociated from Golgi membranes by ATP depletion, GTP gamma S could restore Golgi membrane association of the 110-kD protein, but not if BFA was present. All of these effects observed with GTP gamma S in semipermeable cells could be reproduced in intact cells treated with AlF4-. These results suggest that guanine nucleotides regulate the dynamic association/dissociation of the 110-kD protein with the Golgi apparatus and that BFA perturbs this process by interfering with the association of the 110-kD protein with the Golgi apparatus.  相似文献   

10.
The fungal drug brefeldin A (BFA) has recently been found to induce a redistribution of medial- and cis-Golgi components to the endoplasmic reticulum (ER), raising the possibility of the existence of a retrograde pathway from the Golgi complex to the ER. Here, we demonstrate a BFA-induced reversible rearrangement of the trans-Golgi membrane protein galactosyltransferase (Gal-T) to the ER in HeLa cells. With immunofluorescence microscopy we have shown that BFA first caused a rapid change of Gal-T immunolabelling from a normal Golgi complex pattern to long and slender structures emanating from the cell centre and co-localizing with tubulin. Then immunofluorescence became ER-like. This effect was not dependent on ongoing protein synthesis and was reversed to normal within 120 min after removal of the drug. Restoration of the Golgi complex after removal of brefeldin A was energy-dependent but not mediated by microtubules nor dependent on protein synthesis. BFA-induced backflow of Gal-T was inhibited by nocodazole, a microtubule-disrupting agent. Immunoelectron microscopy showed that BFA treatment resulted in the fusion of Gal-T-containing vesicles with the ER. Furthermore, sucrose gradient centrifugation showed a significant shift in density of mature Gal-T polypeptides upon BFA treatment: about 40% of the enzyme migrated from its original density (1.13 g/ml) to the density of rough ER (1.19 g/ml). Thus, BFA caused microtubule-dependent vesicular backflow from a trans-Golgi component to the ER followed by fusion of the Golgi-derived vesicles with the ER.  相似文献   

11.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

12.
Brefeldin A (BFA) is a fungal metabolite that disassembles the Golgi apparatus into tubular networks and causes the dissociation of coatomer proteins from Golgi membranes. We have previously shown that an additional effect of BFA is to stimulate the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa (brefeldin A-ADP-riboslyated substrate (BARS)) and that this effect greatly facilitates the Golgi-disassembling activity of the toxin. In this study, BARS has been purified from rat brain cytosol and microsequenced, and the BARS cDNA has been cloned. BARS shares high homology with two known proteins, C-terminal-binding protein 1 (CtBP1) and CtBP2. It is therefore a third member of the CtBP family. The role of BARS in Golgi disassembly by BFA was verified in permeabilized cells. In the presence of dialyzed cytosol that had been previously depleted of BARS or treated with an anti-BARS antibody, BFA potently disassembled the Golgi. However, in cytosol complemented with purified BARS, or even in control cytosols containing physiological levels of BARS, the action of BFA on Golgi disassembly was strongly inhibited. These results suggest that BARS exerts a negative control on Golgi tubulation, with important consequences for the structure and function of the Golgi complex.  相似文献   

13.
Tse YC  Lo SW  Hillmer S  Dupree P  Jiang L 《Plant physiology》2006,142(4):1442-1459
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5-10 microg mL(-1)) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50-100 microg mL(-1)) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.  相似文献   

14.
Brefeldin A (BFA) is a natural product that affects the structure and function of the Golgi apparatus and is in development for cancer chemotherapy. We observed that a wide range of cancer cells could undergo DNA fragmentation associated with apoptosis after BFA treatment. This DNA fragmentation was induced within 15 h in HL60 leukemia cells and after 48 h in K562 leukemia and HT-29 colon carcinoma cells with BFA concentrations as low as 0.1 μM.The DNA fragmentation had the typical internucleosomal pattern in HL60 and HT-29 cells. Apoptotic cells were also detected by microscopy. BFA-induced apoptosis is p53-independent as HL60 and K562 cells are p53 null and HT-29 are p53 mutant cells. BFA could potentiate UCN-01 and staurosporine-induced DNA fragmentation in HL60 cells. Cyclin B1/Cdc2 kinase activity decreased after BFA treatment in HL60 cells, indicating that BFA-induced DNA fragmentation was independent of a cyclin B1/Cdc2 kinase upregulation pathway. Cycloheximide could not prevent BFA-induced DNA fragmentation in HL60 cells, suggesting that protein synthesis is not needed for HL60 cells to undergo apoptosis. On the contrary, cycloheximide blocked BFA-induced DNA fragmentation in HT-29 cells, indicating that apoptosis in HT-29 cells requires macromolecular synthesis. Cell-free system experiments suggested that cytosolic proteins play an important role in triggering DNA fragmentation during apoptosis induced by BFA. Our results show that transduction signaling pathways play central roles in apoptotic regulation.  相似文献   

15.
Herpes simplex virus (HSV) requires the host cell secretory apparatus for transport and processing of membrane glycoproteins during the course of virus assembly. Brefeldin A (BFA) has been reported to induce retrograde movement of molecules from the Golgi to the endoplasmic reticulum and to cause disassembly of the Golgi complex. We examined the effects of BFA on propagation of HSV type 1. Release of virions into the extracellular medium was blocked by as little as 0.3 microgram of BFA per ml when present from 2 h postinfection. Characterization of infected cells revealed that BFA inhibited infectious viral particle formation without affecting nucleocapsid formation. Electron microscopic analyses of BFA-treated and untreated cells (as in control cells) demonstrated that viral particles were enveloped at the inner nuclear membrane in BFA-treated cells and accumulated aberrantly in this region. Most of the progeny virus particles observed in the cytoplasm of control cells, but not that of BFA-treated cells, were enveloped and contained within membrane vesicles, whereas many unenveloped nucleocapsids were detected in the cytoplasm of BFA-treated cells. This suggests that BFA prevents the transport of enveloped particles from the perinuclear space to the cytoplasmic vesicles. These findings indicate that BFA-induced retrograde movement of molecules from the Golgi complex to the endoplasmic reticulum early in infection arrests the ability of host cells to support maturation and egress of enveloped viral particles. Furthermore, we demonstrate that the effects of BFA on HSV propagation are not fully reversible, indicating that maturation and egress of HSV type 1 particles relies on a series of events which cannot be easily reconstituted after the block to secretion is relieved.  相似文献   

16.
Treatment of cultured cells with brefeldin A (BFA) induces the formation of extensive membrane tubules from the Golgi apparatus, trans-Golgi network, and early endosomes in a microtubule-dependent manner. We have reconstituted this transport process in vitro using Xenopus egg cytosol and a rat liver Golgi-enriched membrane fraction. The presence of BFA results in the formation of an intricate, interconnected tubular membrane network, a process that, as in vivo, is inhibited by nocodazole, the H1 anti-kinesin monoclonal antibody, and by membrane pretreatment with guanosine 5'-O-(3-thiotriphosphate). Surprisingly, membrane tubule formation is not due to the action of conventional kinesin or any of the other motors implicated in Golgi membrane dynamics. Two candidate motors of approximately 100 and approximately 130 kDa have been identified using the H1 antibody, both of which exhibit motor properties in a biochemical assay. Finally, BFA-induced membrane tubule formation does not occur in metaphase cytosol, and because membrane binding of both candidate motors is not altered after incubation in metaphase compared with interphase cytosol, these results suggest that either the ATPase or microtubule-binding activity of the relevant motor is cell cycle regulated.  相似文献   

17.
Brefeldin A (BFA) has a dramatic effect on the morphology of the Golgi apparatus and induces a rapid redistribution of Golgi proteins into the ER (Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 1989. Cell. 56:801-813). To date, no evidence that BFA affects the morphology of the trans-Golgi network (TGN) has been presented. We describe the results of experiments, using a polyclonal antiserum to a TGN specific integral membrane protein (TGN38) (Luzio, J.P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. 1990. Biochem. J. 270:97-102), which demonstrate that incubation of cells with BFA does induce morphological changes to the TGN. However, rather than redistributing to the ER, the majority of the TGN collapses around the microtubule organizing center (MTOC). The effect of BFA upon the TGN is (a) independent of protein synthesis, (b) fully reversible (c) microtubule dependent (as shown in nocodazole-treated cells), and (d) relies upon the hydrolysis of GTP (as shown by performing experiments in the presence of GTP gamma S). ATP depletion reduces the ability of BFA to induce a redistribution of Golgi proteins into the ER; however, it has no effect upon the BFA-induced relocalizations of the TGN. These data confirm that the TGN is an organelle which is independent of the Golgi, and suggest a dynamic interaction between the TGN and microtubules which is centered around the MTOC.  相似文献   

18.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

19.
An image-based phenotypic screen was developed to identify small molecule regulators of intracellular traffic. Using this screen we found that AG1478, a previously known inhibitor of epidermal growth factor receptor, had epidermal growth factor receptor-independent activity in inducing the disassembly of the Golgi in human cells. Similar to brefeldin A (BFA), a known disrupter of the Golgi, AG1478 inhibits the activity of small GTPase ADP-ribosylation factor. Unlike BFA, AG1478 exhibits low cytotoxicity and selectively targets the cis-Golgi without affecting endosomal compartment. We show that AG1478 inhibits GBF1, a large nucleotide exchange factor for the ADP-ribosylation factor, in a Sec7 domain-dependent manner and mimics the phenotype of a GBF1 mutant that has an inactive mutation. The treatment with AG1478 leads to the recruitment of GBF1 to the vesicular-tubular clusters adjacent to the endoplasmic reticulum exit sites, a step only transiently observed previously in the presence of BFA. We propose that the treatment with AG1478 delineates a membrane trafficking intermediate step that depends upon the Sec7 domain.  相似文献   

20.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号