首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.

Methodology/Principal Findings

The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.

Conclusions/Significance

In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen.  相似文献   

2.
The importance and priority of specific micro-structural and mechanical design parameters must be established to effectively engineer scaffolds (biomaterials) that mimic the extracellular matrix (ECM) environment of cells and have clinical applications as tissue substitutes. In this study, three-dimensional (3-D) matrices were prepared from type I collagen, the predominant compositional and structural component of connective tissue ECMs, and structural-mechanical relationships were studied. Polymerization conditions, including collagen concentration (0.3-3 mg/mL) and pH (6-9), were varied to obtain matrices of collagen fibrils with different microstructures. Confocal reflection microscopy was used to assess specific micro-structural features (e.g., diameter and length) and organization of component fibrils in 3-D. Microstructural analyses revealed that changes in collagen concentration affected fibril density while maintaining a relatively constant fibril diameter. On the other hand, both fibril length and diameter were affected by the pH of the polymerization reaction. Mechanically, all matrices exhibited a similar stress-strain curve with identifiable "toe," "linear," and "failure" regions. However the linear modulus and failure stress increased with collagen concentration and were correlated with an increase in fibril density. Additionally, both the linear modulus and failure stress showed an increase with pH, which was related to an increasedfibril length and a decreasedfibril diameter. The tensile mechanical properties of the collagen matrices also showed strain rate dependence. Such fundamental information regarding the 3-D microstructural-mechanical properties of the ECM and its component molecules are important to our overall understanding of cell-ECM interactions (e.g., mechanotransduction) and the development of novel strategies for tissue repair and replacement.  相似文献   

3.
The magnetic resonance (MR) appearance of the weight-bearing ("loaded") and not-weight-bearing ("unloaded") regions in T(2)-weighted images of pig articular cartilage is different. On the hypothesis that this difference may be ascribed, at least in part, to a different collagen fibre organization in the two regions, this organization was studied using biochemical, histological, and X-ray diffraction methods. While the mean concentrations of collagen and of its cross-links were the same in the two regions, a regular small angle X-ray diffraction pattern was observed only for the habitually "loaded" tissue. It was also seen by light microscopy that the four typical functional zones were well displayed in the "loaded" cartilage whereas they were not clearly depicted in the "unloaded" tissue. Collagen presented a high concentration of fibrils forming an intricate and dense meshwork at the surface of both "loaded" and "unloaded" cartilage. A second zone of high collagen concentration was present at the upper layer of the deep zone of "loaded" cartilage. By contrast, this lamina of highly concentrated fibrils was lacking in "unloaded" cartilage and collagen fibrils appear thinner. Our study proves that the organization of collagen fibres is different for the "loaded" and "unloaded" regions of articular cartilage. It also suggests that this different organization may influence the MR appearance of the tissue. J. Exp. Zool. 287:346-352, 2000.  相似文献   

4.
The collagen fibrils are formed by self-assembly of individual collagen molecules, but the mechanism that drives their orderly packing during fibril formation is not clearly defined. To identify structural determinants critical for the D-periodic alignment of collagen molecules we employed three sets of genetically engineered collagen II variants: (i) a set in which domains corresponding to the specific D periods have been purposely deleted, (ii) a set of collagen variants consisting of tandem repeats of a specific D period, and (iii) a set lacking definite fragments of the D4 period. All collagen variants were analyzed for their ability to assemble into D-periodic fibrils. Even though all genetically engineered collagen variants differ significantly from the wild-type collagen II, most of them were able to form filamentous structures. The D-periodic banding pattern, an indication of the staggered arrangement of collagen monomers, however, occurred only when the D1, D4, and D0.4 domains of interacting collagen monomers could potentially cluster together to form a triad through telopeptide-mediated binding. Our results identify a critical step in the formation of collagenous matrices and provide experimental evidence for the active involvement of the N-terminal and C-terminal regions of fibrillar collagens in this process.  相似文献   

5.
The extracellular matrix in tissues such as bone, tendon and cornea contains ordered, parallel arrays of collagen type I fibrils. Cells embedded in these matrices frequently co-align with the collagen fibrils, suggesting that ordered fibrils provide structural or signalling cues for cell polarization. To study mechanisms of matrix-induced cell alignment, we used nanoscopically defined two-dimensional matrices assembled of highly aligned collagen type I fibrils. On these matrices, different cell lines expressing integrin alpha(2)beta(1) polarized strongly in the fibril direction. In contrast, alpha(2)beta(1)-deficient cells adhered but polarized less well, suggesting a role of integrin alpha(2)beta(1) in the alignment process. Time-lapse atomic force microscopy (AFM) demonstrated that during alignment cells deform the matrix by reorienting individual collagen fibrils. Cells deformed the collagen matrix asymmetrically, revealing an anisotropy in matrix rigidity. When matrix rigidity was rendered uniform by chemical cross-linking or when the matrix was formed from collagen fibrils of reduced tensile strength, cell polarization was prevented. This suggested that both the high tensile strength and pliability of collagen fibrils contribute to the anisotropic rigidity of the matrix, leading to directional cellular traction and cell polarization. During alignment, cellular protrusions contacted the collagen matrix from below and above. This complex entanglement of cellular protrusions and collagen fibrils may further promote cell alignment by maximizing cellular traction.  相似文献   

6.
Matrix metalloproteinases (MMPs) 8 and 13 comprise the collagenase subfamily in rats and mice, and only MMP13 has been implicated in degradation of the collagenous matrices during development of bone and cartilage. On the hypothesis that MMP8 is also involved in bone and cartilage development, the present study was designed to investigate gene expression of MMP8 in rat embryonic mandibles and hind limbs. Expression of MMP8 was examined with in situ hybridization and RT-PCR and was compared with that of MMP13. Osteoblastic and chondrocytic cells expressing collagenous matrix molecules were identified using in situ hybridization for collagen Types I and II. The results demonstrated that MMP8 is expressed by osteoblastic progenitors, differentiated osteoblasts, osteocytes, and chondrocytes in the growth plate for the first time. Furthermore, the expression of MMP8 is much broader than that of MMP13, for which expression is confined to differentiated phenotypes of osteoblastic and chondrocytic lineage.  相似文献   

7.
Among the structural components of extracellular matrices (ECM) fibrillar collagens play a critical role, and single amino acid substitutions in these proteins lead to pathological changes in tissues in which they are expressed. Employing a biologically relevant experimental model consisting of cells expressing R75C, R519C, R789C, and G853E procollagen II mutants, we found that the R789C mutation causing a decrease in the thermostability of collagen not only alters individual collagen molecules and collagen fibrils, but also has a negative impact on fibronectin. We propose that thermolabile collagen molecules are able to bind to fibronectin, thereby altering intracellular and extracellular processes in which fibronectin takes part, and we postulate that such an atypical interaction could change the architecture of the ECM of affected tissues in patients harboring mutations in genes encoding fibrillar collagens.  相似文献   

8.
The collagenous tissues of echinoderms, which have the unique capacity to rapidly and reversibly alter their mechanical properties, resemble the collagenous tissues of other phyla in consisting of collagen fibrils in a nonfibrillar matrix. Knowledge of the composition and structure of their collagen fibrils and interfibrillar matrix is thus important for an understanding of the physiology of these tissues. In this report it is shown that the collagen molecules from the fibrils of the spine ligament of a seaurchin and the deep dermis of a sea-cucumber are the same length as those from vertebrate fibrils and that they assemble into fibrils with the same repeat period and gap/overlap ratio as do those of vertebrate fibrils. The distributions of charged residues in echinoderm and vertebrate molecules are somewhat different, giving rise to segment-long-spacing crystallites and fibrils with different banding patterns. Compared to the vertebrate pattern, the banding pattern of echinoderm fibrils is characterized by greatly increased stain intensity in the c3 band and greatly reduced stain intensity in the a3 and b2 bands. The fibrils are spindle-shaped, possessing no constant-diameter region throughout their length. The shape of the fibrils is mechanically advantageous for their reinforcing role in a discontinuous fiber-composite material.  相似文献   

9.
Collagen II fibrils are a critical structural component of the extracellular matrix of cartilage providing the tissue with its unique biomechanical properties. The self-assembly of collagen molecules into fibrils is a spontaneous process that depends on site-specific binding between specific domains belonging to interacting molecules. These interactions can be altered by mutations in the COL2A1 gene found in patients with a variety of heritable cartilage disorders known as chondrodysplasias. Employing recombinant procollagen II, we studied the effects of R75C or R789C mutations on fibril formation. We determined that both R75C and R789C mutants were incorporated into collagen assemblies. The effects of the R75C and R789C substitutions on fibril formation differed significantly. The R75C substitution located in the thermolabile region of collagen II had no major effect on the fibril formation process or the morphology of fibrils. In contrast, the R789C substitution located in the thermostable region of collagen II caused profound changes in the morphology of collagen assemblies. These results provide a basis for identifying pathways leading from single amino acid substitutions in collagen II to changes in the structure of individual fibrils and in the organization of collagenous matrices.  相似文献   

10.
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.  相似文献   

11.
The present article describes the three-dimensional arrangement of collagen fibrils in dermal plates of different species of Ostraciidae. These dermal plates or 'scutes' are transformed scales, which have a polygonal shape and form a rigid tiling. They are natural composites, associating a fibrous network with a mineral deposit lying at two different levels of the scute, the 'ceiling' and the 'floor', plus a set of similarly mineralized walls joining the two levels. The three-dimensional structure of the collagen network can be compared to that of 'plywood': fibrils align parallel within superposed layers of uniform thickness, and their direction changes from layer to layer. In the dermal plate, two types of plywood have been evidenced: (1) one lying between the two mineralized plates, where the orientation of fibrils rotates continuously, and (2) one under the lower plate, with thick layers of fibrils, each showing a constant orientation, but abrupt angular changes are observed at the transition from one layer to the following one. In oblique sections, both types of plywood reveal large series of arced patterns, testifying to a twisted arrangement of collagen fibrils, analogous to the arrangement of molecules or polymers in cholesteric liquid crystals. The network is reinforced by some collagen fibrils running unidirectionally and almost normally to the lamellate structure. Moreover in the overall organization of the scute, these plywood systems form a set of nested boxes. This original architecture is compared to the arrangement of the collagenous network previously described in most fish scales and in other extracellular matrices.  相似文献   

12.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

13.
A monoclonal antibody to a core-protein-related epitope of a small dermatan sulfate-rich proteoglycan (DS-PGII) isolated from adult bovine articular cartilage (22) was used to localize this molecule, or molecules containing this epitope, in bovine articular cartilages, in cartilage growth plate, and in other connective tissues. Using an indirect method employing peroxidase-labeled pig anti-mouse immunoglobulin G, DS-PGII was shown to be present mainly in the superficial zone of adult articular condylar cartilage of the metacarpal-phalangeal joint. In fetal articular and epiphyseal cartilages, the molecule was uniformly distributed throughout the matrix. By approximately 10 months of age it was confined mainly to the superficial and middle zones of articular cartilage and the inter-territorial and pericellular matrix of the deep zone. DS-PGII was not detected in the primary growth plate of the fetus except in the proliferative zone, where it was sometimes present in trace amounts. In contrast, it was present throughout the adjacent matrix of developing epiphyseal cartilage. In the trabeculae of the metaphysis, strong staining for DS-PGII was seen in decalcified osteoid and bone immediately adjacent to osteoblasts. Staining was also observed on collagen fibrils in skin, tendon, and ligament and in the adventitia of the aorta and of smaller arterial vessels in the skin. These observations indicate that DS-PGII and/or molecules containing this epitope are widely distributed in collagenous tissues, where the molecule is intimately associated with collagen fibrils; in adult cartilage this association is limited mainly to the narrow parallel arrays of fibrils which are found in the superficial zone at the articular surface. From its intimate association and other studies, this molecule may play an important role in determining the sizes and tensile properties of collagen fibrils; it may also be involved in the calcification of osteoid but not of cartilage.  相似文献   

14.
Ultrastructural study of gravid and postpartum involuting human uteri revealed a number of cells containing collagen fibrils in their cytoplasm. In gravid uteri these cells could be identified as macrophages and fibroblasts; in the postpartum uteri smooth muscle cells (SMC) were also found, containing cytoplasmic collagenous vacuoles. The morphology of intracellular collagen in SMC was similar to that observed in macrophages: fragments of banded collagen fibrils with a diameter corresponding to that of extracellular collagen were located within structures considered to be phagosomes. Limiting membranes were always smooth, most often in apposition to the fibrils that were single or packed in small groups; some cytoplasmic vacuoles contained banded elongated profiles barely discernable as collagen. The collagen fibrils within SMC of the involuting human uterus are regarded as a morphological manifestation of heterogenic enclosure of collagen fibrils and their intracellular degradation. It seems that in the postpartum uterus, where a substantial amount of collagen needs to be removed rapidly, both macrophages and SMC are involved in the process of collagen phagocytosis and degradation. These data suggest that SMC may be involved in the cellular mechanism for collagen breakdown in remodelling SMC-containing tissues like the uterus and the vascular wall.  相似文献   

15.
In highly aligned connective tissues, such as tendon, collagen fibrils are linked together by proteoglycans (PGs). Recent mechanical and theoretical studies on tendon micromechanics have implied that PGs mediate mechanical interactions between adjacent collagen fibrils. We used transmission electron microscopy to observe the collagen fibril-PG interactions in porcine mitral valve chordae under variable loading conditions and found that PGs attached to collagen fibrils perpendicularly in the load-free situation, and became skewed when the chordae were loaded. The average skewness angle of PGs increased with the applied load, and hence the strain in the chordae. The observation of PG skewing with the application of load demonstrates that, in mitral valve chordae, interfibrillar slippage occurs and that PGs play a role in fibril-to-fibril interaction and likely transfer force. The results of this study provide new insights into the mechanical role of PGs and support some recent theoretical models.  相似文献   

16.
17.
To determine the supramolecular forms in which avian type X collagen molecules assemble within the matrix of hypertrophic cartilage, we performed immunoelectron microscopy with colloidal gold-labeled monoclonal antibodies. In addition double-labeled analyses were performed for the molecule and type II collagen, employing two monoclonal antibodies attached to different size gold particles. Both in situ limb cartilages and the extracellular matrix of chondrocyte cultures were examined. We observed in both systems that the type X collagen is present in two forms. One is as fine filaments (less than 5 nm in diameter) within mats which are found predominantly in the pericellular matrix of the hypertrophic chondrocytes. The second form is in association with the fibrils (10-20 nm in diameter) which also react with the antibody for type II collagen. It seems that the filamentous mats represent a form in which the type X collagen is initially secreted from the cell. The type X associated with the striated fibrils most likely represents a secondary association of the molecule with preexisting type II/IX/XI fibrils. The data are consistent with our previously proposed hypothesis that type X collagen is involved in, and perhaps even "targets," certain matrix components for degradation and removal.  相似文献   

18.
An electron microscopic analysis of human and bovine vitreous humor after rotary shadowing showed the presence of both collagen fibrils and an extensive loose network of hyaluronan molecules. No interaction between the collagen fibrils and the hyaluronan molecules was observed under the conditions used for rotary shadowing. Periodic "struts" were present on the surface of the collagen fibrils. These struts showed an organization the same as that previously observed for type IX collagen on the surface of collagen fibrils from chicken cartilage and vitreous. However, the knob of the noncollagenous NC4 domain of cartilage type IX collagen was not observed at the ends of the struts in a manner identical to that of chicken vitreous humor. Zonular fibrils were dissected out from bovine eyes and shown by rotary shadowing to contain a beaded fibril which is similar in morphology to the "elastin-associated" microfibrils of many connective tissues. Experiments in which the zonular fibrils were stretched and fixed prior to rotary shadowing showed that the distance between each bead is variable and can be accounted for by the bowing out of overlapping filaments which connect each bead.  相似文献   

19.
Fibril-associated collagens (FACITs) form one of subfamilies included in family of collagens. Being minor components of connective tissue of multicellular animals, FACITs play an important role in structurization of extracellular matrix whose peculiarities determine essential intertissue differences. FACITs participate in regulation of sizes of banded collagen fibrils as well as are connecting links between various components extracellular matrix and cells in different tissues. Functional characteristics of FACIT molecules are determined by peculiarities of structural organization of their α-chains (breakdowns in collagenous domains and module structure of N-terminal noncollagenous sites), trimeric molecules (domains of trimerization) and supramolecular assemblies (mainly association with banded collagen fibrils and the inability to form homopolymeric supramolecular aggregates). The problem of evolution of this group of collagen molecules is also discussed. A hypothetical model of structural changes leading to formation of the FACIT subfamily is proposed.  相似文献   

20.
The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号