首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism.  相似文献   

2.
In fragmented landscapes, small populations may be subjected to inbreeding or genetic drift. Gene flow is expected to alleviate the burden of deleterious mutations in such populations. The beneficial effects of outcrossing may, however, depend on life history characteristics such as the species’ breeding system. Frequent selfing is expected to purge (sub)lethal alleles and mitigate inbreeding depression, at least if the load of mildly deleterious mutations has not accumulated through genetic drift in populations with a small effective size. Gene-inflow from distant source populations can cause outbreeding depression due to genomic incompatibilities. We tested these predictions using highly fragmented populations of the self-compatible forest herb Geum urbanum. Assessment of mating system parameters using microsatellite markers inferred high selfing rates (92.5%), confirming the predominantly self-fertilizing character of the study species. We conducted experimental pollinations with self and outcross pollen collected from populations at different distances from the target populations. There were no significant signs of inbreeding depression, even in very small target populations. Except for a minor negative effect on the germination rate for the long-distance crosses, we found no effects of outbreeding on fitness estimates.  相似文献   

3.
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition‐dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.  相似文献   

4.
Sexual selection is often prevented during captive breeding in order to maximize effective population size and retain genetic diversity. However, enforcing monogamy and thereby preventing sexual selection may affect population fitness either negatively by preventing the purging of deleterious mutations or positively by reducing sexual conflicts. To better understand the effect of sexual selection on the fitness of small populations, we compared components of female fitness and the expression of male secondary sexual characters in 19 experimental populations of guppies (Poecilia reticulata) maintained under polygamous or monogamous mating regimes over nine generations. In order to generate treatments that solely differed by their level of sexual selection, the middle‐class neighbourhood breeding design was enforced in the monogamous populations, while in the polygamous populations, all females contributed similarly to the next generation with one male and one female offspring. This experimental design allowed potential sexual conflicts to increase in the polygamous populations because selection could not operate on adult‐female traits. Clutch size and offspring survival showed a weak decline from generation to generation but did not differ among treatments. Offspring size, however, declined across generations, but more in monogamous than polygamous populations. By generation eight, orange‐ and black‐spot areas were larger in males from the polygamous treatment, but these differences were not statistically significant. Overall, these results suggest that neither sexual conflict nor the purging of deleterious mutation had important effects on the fitness of our experimental populations. However, only few generations of enforced monogamy in a benign environment were sufficient to negatively affect offspring size, a trait potentially crucial for survival in the wild. Sexual selection may therefore, under certain circumstances, be beneficial over enforced monogamy during captive breeding.  相似文献   

5.
In the Kentish Plover Charadrius alexandrinus one of the adults, typically the female, deserts the brood when the chicks are a few days old. Once parental care is terminated, adults may initiate a second nesting attempt if sufficient time remains within the season. For these nests, individuals pair with different mates from those of the first nesting attempt, thus becoming sequentially polygamous. In a small population of Kentish Plovers in Fuente de Piedra lake (southern Spain), the duration of biparental care of broods was longer than in other localities. It also showed considerable variation between years that was evidently related to Gull-billed Tern Gelochelidon nilotica predation pressure on the chicks. There was year-to-year variation in the number of polygamous matings. Both the duration of the breeding season and nesting success in the first half of the season limited the occurrence of polygamy. Despite females deserting broods earlier than males, the interval between the first and second nesting of polyandrous females and polygynous males was similar. The interval was not affected by the body condition of females after the first nesting attempt, nor by problems related to egg formation ability, but was probably due to the availability of potential mates. More females than males initiated second nests, suggesting that polygamous opportunities were more limited for males than for females. In terms of delayed breeding, reduced survivorship or reduced breeding opportunities in years following polygamous breeding, polygamous individuals did not have greater costs than non-polygamous ones. Females with second nests did not seem to be selective in mate choice, mating with any available male. Mates for second nests may therefore be of lower quality than those for first nests, as judged by male plumage characteristics. Clutch sizes and egg characteristics of polyandrous females were similar in first and second nests. Nest success of second nests was only 40% of that of first ones, with nest desertion accounting for 60% of the losses. As the costs of polygamy are apparently low and as breeding success is very variable among years, polygamous breeding of the long-lived Kentish Plover may be an important breeding strategy with which to increase individual lifetime reproductive success.  相似文献   

6.
The accumulation of mildly deleterious missense mutations in individual human genomes has been proposed to be a genetic basis for complex diseases. The plausibility of this hypothesis depends on quantitative estimates of the prevalence of mildly deleterious de novo mutations and polymorphic variants in humans and on the intensity of selective pressure against them. We combined analysis of mutations causing human Mendelian diseases, of human-chimpanzee divergence, and of systematic data on human genetic variation and found that ~20% of new missense mutations in humans result in a loss of function, whereas ~27% are effectively neutral. Thus, the remaining 53% of new missense mutations have mildly deleterious effects. These mutations give rise to many low-frequency deleterious allelic variants in the human population, as is evident from a new data set of 37 genes sequenced in >1,500 individual human chromosomes. Surprisingly, up to 70% of low-frequency missense alleles are mildly deleterious and are associated with a heterozygous fitness loss in the range 0.001-0.003. Thus, the low allele frequency of an amino acid variant can, by itself, serve as a predictor of its functional significance. Several recent studies have reported a significant excess of rare missense variants in candidate genes or pathways in individuals with extreme values of quantitative phenotypes. These studies would be unlikely to yield results if most rare variants were neutral or if rare variants were not a significant contributor to the genetic component of phenotypic inheritance. Our results provide a justification for these types of candidate-gene (pathway) association studies and imply that mutation-selection balance may be a feasible evolutionary mechanism underlying some common diseases.  相似文献   

7.
A model is described of a highly redundant complex organism that has overlapping banks of genes such that each vital function is specified by several different genetic systems. This generates a synergistic profile linking probability of survival to the number of deleterious mutations in the genome. Computer models show that there is a dynamic interaction between the mean number of new deleterious mutations per generation (X), the mean number of deleterious mutations in the genome of the population (Y) and percentage zygote survival (Zs). IncreasedX leads to increasedY and a fall in Zs but it takes several generations before a new equilibrium is reached. If sexual attraction is influenced by the number of deleterious mutations in the genome of individuals thenY is reduced and Zs increased for any given value ofX. This fall inY and rise in Zs is more marked in polygamous than monogamous mating systems. The model is specified such that deleterious mutations can occur without any observable or measurable effect on function. Thus sexual selection, in this organism, for low levels of deleterious mutations cannot be based on assessment of performance. Instead it is based on a simple symmetrical surface pattern that is flawlessly reproduced by organisms with no deleterious mutations, but is less than perfect, and therefore less attractive, if genetic systems have been deleted. A complex vital task requires a system with a high level of redundancy that acts so that the loss of one component has no observable effect and therefore cannot be used for sexual selection. The reproduction of a beautiful surface pattern also requires a low error, high redundancy genetic system; however, in this case there is advantage if a single deleterious mutation produces a recognisable change. This leads to the conclusion that sexual selection and sexual attraction should be based on beauty rather than utility, and explains the common observation in nature that it is the most beautiful that survive.  相似文献   

8.
According to theory, sexual selection in males may efficiently purge mutation load of sexual populations, reducing or fully compensating ‘the cost of males’. For this to occur, mutations not only need to be deleterious to both sexes, they also must affect males more than females. A frequently overlooked problem is that relative strength of selection on males versus females may vary between environments, with social conditions being particularly likely to affect selection in males and females differently. Here, we induced mutations in red flour beetles (Tribolium castaneum) and tested their effect in both sexes under three different operational sex ratios (1:2, 1:1 and 2:1). Induced mutations decreased fitness of both males and females, but their effect was not stronger in males. Surprisingly, operational sex ratio did not affect selection against deleterious mutations nor its relative strength in the sexes. Thus, our results show no support for the role of sexual selection in the evolutionary maintenance of sex.  相似文献   

9.
M. Santos 《Genetica》1986,69(1):35-45
A model for explaining the establishment of newly arisen inversions in natural populations, in which the inverted segment may be selected for if its load of deleterious mutations is smaller than the average load of the noninverted segment in the population, is tested for Drosophila subobscura. The results show that for new inversions, originally with no deleterious alleles, the expected cumulative distribution of inversion lengths fits fairly well with the observed one. Therefore, genic selection may be an important cause of the establishment of newly arisen inversions in natural populations of D. subobscura. The applicability of the model to the maintenance of the inversion polymorphism present in this species; is discussed.  相似文献   

10.
Sex chromosomes in dioecious and polygamous plants evolved as a mechanism for ensuring outcrossing to increase genetic variation in the offspring. Sex specificity has evolved in 75% of plant families by male sterile or female sterile mutations, but well-defined heteromorphic sex chromosomes are known in only four plant families. A pivotal event in sex chromosome evolution, suppression of recombination at the sex determination locus and its neighboring regions, might be lacking in most dioecious species. However, once recombination is suppressed around the sex determination region, an incipient Y chromosome starts to differentiate by accumulating deleterious mutations, transposable element insertions, chromosomal rearrangements, and selection for male-specific alleles. Some plant species have recently evolved homomorphic sex chromosomes near the inception of this evolutionary process, while a few other species have sufficiently diverged heteromorphic sex chromosomes. Comparative analysis of carefully selected plant species together with some fish species promises new insights into the origins of sex chromosomes and the selective forces driving their evolution.  相似文献   

11.
We model a large population that is subject to successive short bottlenecks, in order to investigate the impact of different extents of immigration on the change in genetic load and on viability. A first simple genetic model uncovers the opposite effects of immigration on fitness according to the type of deleterious mutations considered: immigration increases fitness if the genetic load is comprised of mildly deleterious mutations, whereas it decreases fitness if it is comprised of lethals. When considering both types of mutations and adding explicit stochastic demographic considerations, in which bottlenecks are engendered by random catastrophes, the global impact of immigration on viability is dependent upon a balance between its opposite effects on the two components of the genetic load and on demographic stochasticity. In this context, immigration tends to increase the probability of extinction if occurring preferentially when population density is high, while it decreases extinction if occurring preferentially towards low-density populations.  相似文献   

12.
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.  相似文献   

13.
Inbreeding depression threatens the survival of small populations of both captive and wild outbreeding species. In order to fully understand this threat, it is necessary to investigate what role purging plays in reducing inbreeding depression. Ballou (1997) undertook such an investigation on 25 mammalian populations, using an ancestral inbreeding regression model to detect purging. He concluded that there was a small but highly significant trend of purging on neonatal survival across the populations. We tested the performance of the regression model that Ballou used to detect purging on independently simulated data. We found that the model has low statistical power when inbreeding depression is caused by the build-up of mildly deleterious alleles. It is therefore possible that Ballou's study may have underestimated the effects of ancestral inbreeding on the purging of inbreeding depression in captive populations if their inbreeding depression was caused mainly by mildly deleterious mutations. We also developed an alternative regression model to Ballou's, which showed an improvement in the detection of purging of mildly deleterious alleles but performed less well if deleterious alleles were of a large effect.  相似文献   

14.
Mallet MA  Chippindale AK 《Heredity》2011,106(6):994-1002
Stronger selection on males has the potential to lower the deleterious mutation load of females, reducing the cost of sex. However, few studies have directly quantified the strength of selection for both sexes. As the magnitude of inbreeding depression (ID) is related to the strength of selection, we measured the cost of inbreeding for both males and females in a laboratory population of Drosophila melanogaster. Using a novel technique for inbreeding, we found significant ID for both juvenile viability and adult fitness in both sexes. The genetic variation responsible for this depression in fitness appeared to be recessive for adult fitness (h=0.11) and partially additive for juvenile viability (h=0.29). ID was identical across the sexes in terms of juvenile viability but was significantly more deleterious for males than females as adults, even though female X-chromosome homogamety should predispose them to a higher inbreeding load. We estimated the strength of selection on adult males to be 1.24 greater than on adult females, and this appears to be a consequence of selection arising from competition for mates. Combined with the generally positive intersexual genetic correlation for inbred lines, our results suggest that the mutation load of sexual females could be meaningfully reduced by stronger selection acting on males.  相似文献   

15.
Population genetic forces have molded the constitution of the human genome over evolutionary time, and some of the most important parameters are the initial frequency of the allele, p, the effective population size, Ne, and the selection coefficient, s. There is considerable agreement among evolutionary gerontologists that the amplitude of -s is small for alleles that are Deleterious In Late Life (DILL), and thus DILL traits are effectively neutral and should be fixed in the human population in relationship to Ne and p. Even higher rates of fixation of deleterious mutations are predicted to occur in the two nonrecombinant genomes in humans, i.e., the Y chromosome and the mitochondrial genome, as a consequence of their lower Ne than autosomes, and the predicted higher rate of fixation of deleterious alleles on the Y may explain the reduced average life span of males vs. females. The high probability of fixation of neutral and mildly deleterious mutations in the mitochondrial genome explains in part its fast rate of evolution, the high observed frequency of mitochondrial disease in relationship to this genome's small size, and may be the underlying reason for the transfer of mitochondrial genes over evolutionary time to the nucleus. The predicted higher concentration of deleterious mutations on the mitochondrial genome could have some leverage to cause more dysfunction than that predicted by mitochondrial gene number alone, because of the essential role of mitochondrial gene function in multisubunit complexes, the coupling of mitochondrial functions, the observation that some mtDNA sequences facilitate somatic mutation, and the likelihood of deleterious mutations either increasing the production of or the sensitivity to mitochondrial ROS.  相似文献   

16.
In polygamous species, successful males should be able to inseminate multiple females, to defeat sperm from previous males, to avoid sperm displacement by other males, and to induce females to use his sperm during fertilization. Since resources are limited, adaptations to perform any of these functions may conflict with each other (and with other life-history traits) and trade-offs are expected to evolve. We studied if males of the polygamous true bug Stenomacra marginella face a trade-off between multiple mating and survivorship, by comparing the survivorship of virgin and multiply mated males. We also looked for physiological costs of ejaculate production by examining ejaculate production in consecutive matings in multiple mated males. Multiply mated males were able to produce ejaculates of similar size in up to six consecutive copulations but they had decreased survivorship in comparison with virgin males. There was no difference in survivorship between males mated three and six consecutive times, suggesting that the negative relation between survivorship and number of copulations is not linear. The decrease in survivorship seems to be a cost of mating and ejaculate production. This cost could favor the evolution of prudence in the allocation of resources to ejaculate production (e.g., cryptic male choice).  相似文献   

17.
Haccou P  Schneider MV 《Genetics》2004,166(2):1093-1104
Mutational load depends not only on the number and nature of mutations but also on the reproductive mode. Traditionally, only a few specific reproductive modes are considered in the search of explanations for the maintenance of sex. There are, however, many alternatives. Including these may give radically different conclusions. The theory on deterministic deleterious mutations states that in large populations segregation and recombination may lead to a lower load of deleterious mutations, provided that there are synergistic interactions. Empirical research suggests that effects of deleterious mutations are often multiplicative. Such situations have largely been ignored in the literature, since recombination and segregation have no effect on mutation load in the absence of epistasis. However, this is true only when clonal reproduction and sexual reproduction with equal male and female ploidy are considered. We consider several alternative reproductive modes that are all known to occur in insects: arrhenotoky, paternal genome elimination, apomictic thelytoky, and automictic thelytoky with different cytological mechanisms to restore diploidy. We give a method that is based on probability-generating functions, which provides analytical and numerical results on the distributions of deleterious mutations. Using this, we show that segregation and recombination do make a difference. Furthermore, we prove that a modified form of Haldane's principle holds more generally for thelytokous reproduction. We discuss the implications of our results for evolutionary transitions between different reproductive modes in insects. Since the strength of Muller's ratchet is reduced considerably for several forms of automictic thelytoky, many of our results are expected to be also valid for initially small populations.  相似文献   

18.
Mitochondrial genomes are usually inherited maternally and therefore there is no direct selection against mutations that have deleterious effects in males only (mother’s curse). This is true in particular for mitochondrial mutations that reduce the fertility of their male carriers, as has been reported in a number of species. Using both analytical methods and computer simulations, we demonstrate that spatial population structure can induce strong selection against such male infertility mutations. This is because (1) infertile males may reduce the fecundity of the females they mate with and (2) population structure induces increased levels of inbreeding, so that the fitness of females carrying the mutation is more strongly reduced than the fitness of wild‐type females. Selection against mitochondrial male infertility mutations increases with decreasing deme size and migration rates, and in particular with female migration rates. On the other hand, the migration model (e.g., island or stepping stone model) has generally only minor effects on the fate of the mitochondrial mutations.  相似文献   

19.
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites—both in the presence and absence of interference amongst deleterious mutations—and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.  相似文献   

20.
Analyses of mitochondrial DNA (mtDNA) sequences have revealed non-neutral patterns, suggesting that many amino acid mutations in animal mtDNA may be mildly deleterious, but this has not been verified in human clinical series. Since sensorineural hearing impairment (SNHI) is a common manifestation in many of the syndromes caused by mutations in mtDNA, this may be regarded as the phenotype of choice in attempts to detect mutations that may have a mildly deleterious effect on mitochondrial function. We selected 32 subjects from among 117 unrelated SNHI patients with SNHI in maternal relatives by means of family history, determined the entire coding region sequence of mtDNA and compared the sequence variation with that in 32 haplogroup-matched controls taken at random from 192 Finnish sequences. The 32 control sequences differed from the remaining 160 sequences by 36±9 substitutions (mean ± SD), while the difference for the 32 patients was 58±4 substitutions (P=0.005 for difference; Wilcoxon signed rank test). Differences were also found in the number of new haplotypes and new non-synonymous mutations or mutations in tRNA or rRNA genes. A total of 12 rare mtDNA variants were detected in the patients, and only 3 of these were considered to be neutral in effect. It is proposed that increased sequence variation in mtDNA may be a genetic risk factor for SNHI, and the increased frequency of rare haplotypes in these patients points to the presence of mildly deleterious mutations in mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号