首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Adhesion of enteropathogenic Escherichia coli to host cells   总被引:9,自引:1,他引:8  
Enteropathogenic Escherichia coli (EPEC) adhere to the intestinal mucosa and to tissue culture cells in a distinctive fashion, destroying microvilli, altering the cytoskeleton and attaching intimately to the host cell membrane in a manner termed the attaching and effacing effect. Typical EPEC strains also form three-dimensional microcolonies in a pattern termed localized adherence. Attaching and effacing, and in particular intimate attachment requires an outer membrane adhesin called intimin, which binds to the translocated intimin receptor, Tir. Tir is produced by the bacteria and delivered to the host cell via a type III secretion system. In addition to this well-established adhesin-receptor pair, numerous other adhesin interactions between EPEC and host cells have been described including those between intimin and cellular receptors and those involving a bundle-forming pilus and flagella and unknown receptors. Much additional work is needed before a full understanding of EPEC adhesion to host cells comes to light.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC), a leading cause of human infantile diarrhoea, is the prototype for a family of intestinal bacterial pathogens that induce attaching and effacing (A/E) lesions on host cells. A/E lesions are characterized by localized effacement of the brush border of enterocytes, intimate bacterial attachment and pedestal formation beneath the adherent bacteria. As a result of some recent breakthrough discoveries, EPEC has now emerged as a fascinating paradigm for the study of host–pathogen interactions and cytoskeletal rearrangements that occur at the host cell membrane. EPEC uses a type III secretion machinery to attach to epithelial cells, translocating its own receptor for intimate attachment, Tir, into the host cell, which then binds to intimin on the bacterial surface. Studies of EPEC-induced cytoskeletal rearrangements have begun to provide clues as to the mechanisms used by this pathogen to subvert the host cell cytoskeleton and signalling pathways. These findings have unravelled new ways by which pathogenic bacteria exploit host processes from the cell surface and have shed new light on how EPEC might cause diarrhoea.  相似文献   

3.
双歧杆菌及肠致病性大肠杆菌粘附的细胞膜通透性研究   总被引:4,自引:0,他引:4  
采用乳酸脱氢酶释放法比较研究双歧杆菌1027株及肠致生大肠杆菌(EPEC)对体外肠上皮细胞Lovo细胞株粘附的细胞膜通透性,探讨它们对肠上皮细胞的不同生物学交谈2。结果表明,双歧杆菌粘附Lovo细胞后,宿主细胞释放LDH远较EPEC粘附的效果低,提示双歧杆菌粘附对主细胞膜通生影响不大,而EEC则可损伤宿主细胞膜而增加其通性。因此,双歧杆菌作为生理性细菌可与肠上皮细胞和谐共生,这与EPEC的粘附损伤  相似文献   

4.
Enteropathogenic E. coli (EPEC) is a common cause of diarrhea in children in developing countries. After adhering to intestinal cells, EPEC secretes effector proteins into host cells, causing cell damage and eventually death. We previously showed that EPEC infection triggers the release of ATP from host cells and that ATP is broken down to ADP, AMP, and adenosine. Adenosine produced from the breakdown of extracellular ATP triggers fluid secretion in intestinal monolayers and may be an important mediator of EPEC-induced diarrhea. Here we examined whether adenosine has any effects on EPEC bacteria. Adenosine stimulated EPEC growth in several types of media in vitro . Adenosine also altered the pattern of EPEC adherence to cultured cells from a localized adherence pattern to a more diffuse pattern. Adenosine changed the expression of virulence factors in EPEC, inhibiting the expression of the bundle-forming pilus (BFP) and enhancing expression of the EPEC secreted proteins (Esps). In vivo , experimental manipulations of adenosine levels had strong effects on the outcome of EPEC infection in rabbit intestinal loops. In addition to its previously reported effects on host tissues, adenosine has strong effects on EPEC bacteria, stimulating EPEC growth, altering its adherence pattern, and changing the expression of several important virulence genes. Adenosine, like noradrenaline, is a small, host-derived molecule that is utilized as a signal by EPEC.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in young children. EPEC induces the formation of actin pedestal in infected epithelial cells. A type III protein secretion system and several proteins that are secreted by this system, including EspB, are involved in inducing the formation of the actin pedestals. We have demonstrated that contact of EPEC with HeLa cells is associated with the induction of production and secretion of EspB. Shortly after infection, EPEC initiates translocation of EspB, and EspB fused to the CyaA reporter protein (EspB–CyaA), into the host cell. The translocated EspB was distributed between the membrane and the cytoplasm of the host cell. Translocation was strongly promoted by attachment of EPEC to the host cell, and both attachment factors of EPEC, intimin and the bundle-forming pili, were needed for full translocation efficiency. Translocation and secretion of EspB and EspB–CyaA were abolished in mutants deficient in components of the type III protein secretion system, including sepA and sepB mutants. EspB–CyaA was secreted but not translocated by an espB mutant. These results indicate that EspB is both translocated and required for protein translocation by EPEC.  相似文献   

6.
Bacterial pathogens deliver multiple effector proteins into eukaryotic cells to subvert host cellular processes and an emerging theme is the cooperation between different effectors. Here, we reveal that a fine balance exists between effectors that are delivered by enteropathogenic E. coli (EPEC) which, if perturbed can have marked consequences on the outcome of the infection. We show that absence of the EPEC effector Tir confers onto the bacterium a potent ability to destroy polarized intestinal epithelia through extensive host cell detachment. This process was dependent on the EPEC effectors EspG and EspG2 through their activation of the host cysteine protease calpain. EspG and EspG2 are shown to activate calpain during EPEC infection, which increases significantly in the absence of Tir – leading to rapid host cell loss and necrosis. These findings reveal a new function for EspG and EspG2 and show that Tir, independent of its bacterial ligand Intimin, is essential for maintaining the integrity of the epithelium during EPEC infection by keeping the destructive activity of EspG and EspG2 in check.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) are frequently isolated as a cause of infantile diarrhea in developing countries. Its pathogenicity is distinguished by histopathological alterations at the site of infection, known as attaching and effacing (A/E) lesions, in which bacterial virulence factors and host proteins participate. Intimin, a bacterial adhesin expressed by all EPEC described to date, is responsible for the intimate adherence of the bacteria to host cells and is essential for the formation of A/E lesions. Mucosal vaccination may represent an efficacious intervention to prevent EPEC infection and lower morbidity and mortality rates. Strategies for mucosal vaccinations that use lactic acid bacteria for the delivery of heterologous antigens rely on their safety profile and ability to stimulate the immune system. In the present work, we have constructed Lactobacillus casei strains expressing different fragments of intimin beta, a subtype that is frequently expressed by EPEC strains. Mucosal immunization of mice with L. casei expressing intimin fragments induced specific systemic and mucosal antibodies. These antibodies were able to recognize native intimin on the surface of EPEC and to inhibit in vitro EPEC binding to epithelial cells.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell''s height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.  相似文献   

10.
EspA filament-mediated protein translocation into red blood cells   总被引:12,自引:2,他引:10  
Type III secretion allows bacteria to inject effector proteins into host cells. In enteropathogenic Escherichia coli (EPEC), three type III secreted proteins, EspA, EspB and EspD, have been shown to be required for translocation of the Tir effector protein into host cells. EspB and EspD have been proposed to form a pore in the host cell membrane, whereas EspA, which forms a large filamentous structure bridging bacterial and host cell surfaces, is thought to provide a conduit for translocation of effector proteins between pores in the bacterial and host cell membranes. Type III secretion has been correlated with an ability to cause contact-dependent haemolysis of red blood cells (RBCs) in vitro . As EspA filaments link bacteria and the host cell, we predicted that intimate bacteria–RBC contact would not be required for EPEC-induced haemolysis and, therefore, in this study we investigated the interaction of EPEC with monolayers of RBCs attached to polylysine-coated cell culture dishes. EPEC caused total RBC haemolysis in the absence of centrifugation and osmoprotection studies were consistent with the insertion of a hydrophilic pore into the RBC membrane. Cell attachment and haemolysis involved interaction between EspA filaments and the RBC membrane and was dependent upon a functional type III secretion system and on EspD, whereas EPEC lacking EspB still caused some haemolysis. Following haemolysis, only EspD was consistently detected in the RBC membrane. This study shows that intimate bacteria–RBC membrane contact is not a requirement for EPEC-induced haemolysis; it also provides further evidence that EspA filaments are a conduit for protein translocation and that EspD may be the major component of a translocation pore in the host cell membrane.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) adheres to epithelial cells and forms microcolonies in localized areas. Bundle-forming pili (BFP) are necessary for autoaggregation and the formation of microcolonies. In this study, we show that BFP, expressed by EPEC on epithelial cells, disappeared with the expansion of the microcolony. Bacterial dispersal and the release of BFP from the EPEC aggregates were induced by contact with host cellular membrane extract. In addition, BFP-expressing EPEC adhered directly to cell surfaces, in preference to attaching to pre-formed microcolonies on the cells. These results suggested that BFP mediate the initial attachment of EPEC through direct interaction with the host cell rather than through the recruitment of unattached bacteria to microcolonies on the cell.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) is a human-specific pathogen that causes severe diarrhoea in young children. The disease involves intimate interaction between the pathogen and the brush border of enterocytes. During infection, EPEC uses a type III secretion system (TTSS) to inject several proteins into the infected cells, and these effector proteins modify specific processes in the host cell. We show that, upon infection, EPEC induces detachment of the infected host cells from the substratum, modification of focal adhesions (FA) in the infected cells and specific dephosphorylation of focal adhesion kinase (FAK). We also show that EPEC-induced cell detachment is dependent on FAK expression by the infected cells. Finally, we demonstrate that cell detachment, FA modification and FAK dephosphorylation are dependent on functional TTSS in the infecting EPEC. These results suggest that EPEC is using its TTSS to inject protein(s) into the infected cells, which can induce FAK dephosphorylation, as well as FAK-dependent FA modification and cell detachment. These processes are specific and probably play an important role in EPEC virulence.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in children in developing countries. Many EPEC genes involved in virulence are contained within the locus of enterocyte effacement (LEE), a large pathogenicity island. One of the genes at the far righthand end of the LEE encodes EspF, an EPEC secreted protein of unknown function. EspF, like the other Esps, is a substrate for secretion by the type III secretory system. Previous studies found that an espF mutant behaved as wild type in assays of adherence, invasion, actin condensation and tyrosine phosphorylation. As EPEC can kill host cells, we tested esp gene mutants for host cell killing ability. The espF mutant was deficient in host cell killing despite having normal adherence. The addition of purified EspF to tissue culture medium did not cause any damage to host cells, but expression of espF in COS or HeLa cells caused cell death. The mode of cell death in cells transfected with espF appeared to be pure apoptosis. EspF appears to be an effector of host cell death in epithelial cells; its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins.  相似文献   

14.
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are diarrhoeal pathogens that cause the formation of attaching and effacing (A/E) lesions on infected host cells. These pathogens encode a type III secretion system (T3SS) used to inject effector proteins directly into host cells, an essential requirement for virulence. In this study, we identified a function for the type III secreted effector EspZ. Infection with EPEC ΔespZ caused increased cytotoxicity in HeLa and MDCK cells compared with wild‐type EPEC, and expressing espZ in cells abrogated this effect. Using yeast two‐hybrid, proteomics, immunofluorescence and co‐immunoprecipitation, it was demonstrated that EspZ interacts with the host protein CD98, which contributes to protection against EPEC‐mediated cytotoxicity. EspZ enhanced phosphorylation of focal adhesion kinase (FAK) and AKT during infection with EPEC, but CD98 only appeared to facilitate FAK phosphorylation. This study provides evidence that EspZ and CD98 promote host cell survival mechanisms involving FAK during A/E pathogen infection.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.  相似文献   

16.
双歧杆菌粘附体外肠上皮细胞的钙信号传递的研究   总被引:5,自引:1,他引:4  
本文采用钙荧光探剂 Fluo—3/AM染色法,定量研究了双歧杆菌1027株、肠致病性大肠杆菌(EPEC)对体外肠上皮细胞Lovo细胞株粘附的钙信号传递机制。结果表明,双歧杆菌1027株粘附可引起Lovo细胞内Ca~+2随时间延长而梯度升高,但双歧杆菌1027株的作用远不如EPEC明显。同时发现双歧杆菌粘附引起Lovo。细胞内Ca~2+升高主要源于细胞外Ca~2+内流所致,这与EPEC粘附引起宿主细胞内Ca~2+升高主要源于细胞内Ca~2+储池的Ca~2+释放不同。EPEC粘附引起宿主细胞内Ca~2+大幅度升高是其致病的重要信号传递基础;而双歧杆菌粘附仅引起宿主细胞内Ca~2+轻度升高,可能是其作为生理性细菌与肠上皮细胞和谐共生的信号传递基础。  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of infant diarrhoea in developing countries. The EspF protein is the product of the espF gene found on the locus of enterocyte effacement, the key pathogenicity island carried by EPEC and enterohemorrhagic E. coli. EspF is injected from adherent EPEC into host cells via a type III secretion system and was previously shown to induce apoptotic cell death and to be required for disruption of host intestinal barrier function. In this work, we show by immunofluorescence and fractionation studies that EspF is targeted to host mitochondria. The N-terminal region of EspF serves as a mitochondrial import signal and, when expressed within cells, can target hybrid green fluorescent protein to mitochondria. Assessment of mitochondrial membrane potential in infected epithelial cells indicated that EspF plays a role in the mitochondrial membrane permeabilization induced by EPEC infection. Furthermore, EspF was associated with the release of cytochrome c from mitochondria into the cytoplasm and with caspase-9 and caspase-3 cleavage. These findings indicate a role for EspF in initiating the mitochondrial death pathway.  相似文献   

18.
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death.  相似文献   

19.
A major virulence determinant of enteropathogenic Escherichia coli (EPEC) is the Tir molecule that is translocated into the plasma membrane where it orchestrates cytoskeletal rearrangements. Tir undergoes several phosphorylation events within host cells, with modification on a tyrosine essential for its actin-nucleating function. The EHEC (serotype O157:H7) Tir homologue is not tyrosine phosphorylated implying that it uses an alternative mechanism to nucleate actin. This is supported in this study by the demonstration that EHEC Tir is unable to functionally substitute for its EPEC homologue. Like EPEC, the EHEC Tir molecule is phosphorylated within host cells, with the actin-nucleating dysfunction correlated to an altered modification profile. In contrast to EHEC Tir, the EPEC Tir molecule mediated actin nucleation whether delivered into host cells by either strain. Thus, it would appear that EHEC encodes specific factor(s) that facilitate the correct modification of its Tir molecule within host cells. Domain-swapping experiments revealed that the N-terminal, α-actinin binding, Tir domains were functionally interchangeable, with both the actin-nucleating dysfunction and altered modification profiles linked to the EHEC C-terminal Tir domain. This tyrosine-independent modification process presumably confers an advantage to EHEC O157:H7 and may contribute to the prevalence of this strain in EHEC disease. The presented data are also consistent with EPEC and EHEC sharing non-phosphotyrosine phosphorylation event(s), with an important role for such modifications in Tir function. An EHEC-induced phosphotyrosine dephosphorylation activity is also identified.  相似文献   

20.
We previously reported that enteropathogenic Escherichia coli (EPEC) infection triggered a large release of ATP from the host cell that was correlated with and dependent on EPEC-induced killing of the host cell. We noted, however, that under some circumstances, EPEC-induced ATP release exceeded that which could be accounted for on the basis of host cell killing. For example, EPEC-induced ATP release was potentiated by noncytotoxic agents that elevate host cell cAMP, such as forskolin and cholera toxin, and by exposure to hypotonic medium. These findings and the performance of the EPEC espF mutant led us to hypothesize that the CFTR plays a role in EPEC-induced ATP release that is independent of cell death. We report the results of experiments using specific, cell-permeable CFTR activators and inhibitors, as well as transfection of the CFTR into non-CFTR-expressing cell lines, which incriminate the CFTR as a second pathway for ATP release from host cells. Increased ATP release via CFTR is not accompanied by an increase in EPEC adherence to transfected cells. The CFTR-dependent ATP release pathway becomes activated endogenously later in EPEC infection, and this activation is mediated, at least in part, by generation of extracellular adenosine from the breakdown of released ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号