首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gene from Xanthomonas campestris pv. phaseoli that is involved in the C5 pathway of -amino-levulinic acid (ALA) of Escherichia coli. Subcloning of deletion fragments from the initial 2.5-kilobase (kb) chromosomal fragment allowed the isolation of a 1.6-kb fragment that could complement the hemM mutation. Nucleotide sequence analysis of the 1.6-kb DNA fragment revealed an open reading frame that encodes a polypeptide of 426 amino acid residues, and the deduced molecular mass of this polypeptide is 46768 Da. The amino acid sequence shows a high degree of homology of the HemA protein, which is glutamyl-tRNA reductase, to other organisms. Thus, we examined the complementation test of the cloned gene from Xanthomonas with a hemA mutation of E. coli and found that the gene complemented the hemA mutation. These results suggest that the cloned gene is hemA and the gene from Xanthomonas also complements both hemA and hemM mutations, as in the case of the E. coli hemA. Correspondence to: Y. Murooka  相似文献   

2.
3.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

4.
In chloroplasts and a number of prokaryotes, -aminolevulinic acid (ALA), the universal precursor of porphyrins, is synthesized by a multistep enzymatic pathway with glutamyl-tRNAGlu as an intermediate. The ALA synthesizing system from barley chloroplasts is highly specific in its tRNA requirement for chloroplast tRNAGlu; a number of other Glu-tRNAs are inactive in ALA formation although they can be glutamylated by chloroplast aminoacyl-tRNA synthetases. In order to obtain more information about the structural features defining the ability of a tRNA to be recognized by the ALA synthesizing enzymes, we purified and sequenced two cytoplasmic tRNAGlu species from barley embryos which are inactive in ALA synthesis. By using glutamylated tRNAs as a substrate for the overall reaction, we showed that Glu-tRNA reductase is the enzyme responsible for tRNA discrimination.  相似文献   

5.
6.
Addition of hemin (5–200 μM) to a rabbit reticulocyte iron-free incubation medium, resulted in a progressive inhibition of heme synthesis as measured by incorporation of (14C)-glycine. In contrast when (14C) δ-aminolevulinic acid incorporation into heme was studied, significant inhibition below that of the (14C)-glycine control only occurred with hemin concentrations greater than 100 μM. Hemin progressively inhibited cellular and mitochondrialδ-aminolevulinic acid synthetase activity, as well as cellular δ-aminolevulinic acid dehydratase activity. The results indicated that elevated levels of hemin initially control heme synthesis by feedback inhibition at the rate-limiting enzyme of heme synthesis, δ-aminolevulinic acid synthetase. Hemin inhibition of δ-aminolevulinic acid dehydratase is only significant for the entrire heme synthetic pathway when greater than one-third of this enzyme's activity is inhibited.  相似文献   

7.
Hepatic δ-aminolevulinic acid synthetase was induced in rats injected with allylisopropylacetamide. The induction process was studied in relation to experimental perturbation of cytochrome P-450 in the liver. Animals were treated with either administered endotoxin or exogenous heme, both of which accelerate degradation of cytochrome P-450 heme. These manipulations were effective in blocking induction of δ-aminolevulinic acid synthetase, and the effect of each compound was proportional to its ability to stimulate degradation of cytochrome P-450 heme. The findings suggest that the heme moiety of cytochrome P-450 dissociates reversibly from its apoprotein and, prior to its degradation, mixes with endogenously synthesized heme to form a pool that regulates δ-aminolevulinic acid synthetase activity. A similar or identical heme fraction appears to mediate stimulation of heme oxygenase, which suggests that the regulation of δ-aminolevulinic acid synthetase and of heme oxygenase in the liver are closely interrelated.  相似文献   

8.
  • 1.1. A series of analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) was investigated for hepatic δ-aminolevulinic acid (ALA)-synthetase inducing and ferrochelatase-inhibiting activity in the 17-day-old chick embryo.
  • 2.2. A DDC analogue was found which was capable of inducing ALA-synthetase activity without inhibiting ferrochelatase activity.
  • 3.3. On the other hand we were unable to find a DDC analogue with the ability to inhibit ferrochelatase activity which was devoid of ALA-synthetase-inducing activity.
  相似文献   

9.
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.  相似文献   

10.
In greening maize leaves δ-aminolevulinic acid (ALA) was not formed from succinyl-CoA and glycine as shown by the incorporation of [14C]-labeled  相似文献   

11.
The presence of δ-aminolevulinic acid synthetase (ALAS) in mitochondria obtained from rat skeletal muscles has been observed. Optimal conditions for the meausurement of this activity are described. The activity of skeletal muscle ALAS was investigated under conditions known to affect the activity of this enzyme in other tissues. ALAS activity in skeletal muscle mitochondria was decreased 55% by a 48-h fast. Treatment with dexamethasone did not reverse the effect of starvation on ALAS activity and did not change the activity in the fed controls. ALAS activity was decreased 56% in skeletal muscle mitochondria obtained from rats in which diabetes mellitus had been induced by streptozotocin. Administration of insulin to the diabetic animals partially reversed the effect of diabetes on skeletal muscle ALAS; however, administration of insulin to control animals caused a 21% decrease in skeletal muscle ALAS activity. By contrast, treatment with inducers of hepatic ALAS such as allylisopropylacetamide or 3,5-dicarbethoxy-1,4-dihydrocollidine had no effect on skeletal muscle ALAS. These results confirm our previous suggestion that ALAS activity is regulated in a tissue-specific manner.  相似文献   

12.
《Plant science》1986,45(1):9-17
Euglena gracilis is capable of forming the heme and chlorophyll precursor δ-aminolevulinic acid (ALA) by two routes: from glutamate via the five-carbon path in the chloroplasts, and by ALA synthase-mediated condensation of succinyl-CoA and glycine, probably in the mitochondrion. 5-Amino-1,3-cyclohexadienyl carboxylic acid (gabaculine), a powerful inhibitor of ALA formation via the five-carbon path, was administered to E. gracilis Klebs strain Z Pringsheim cells growing in the light or dark, and its effects on growth, chlorophyll accumulation and extractable ALA synthase activity were measured. Gabaculine had no effect in vitro on ALA synthase or ALA dehydratase, even at 100 μM. Administration of 100 μM gabaculine to wild-type cells growing in the light slowed growth, inhibited chlorophyll accumulation, and induced an increase in extractable ALA synthase activity. Chlorophyll accumulation in the light was abolished by prior administration of the compound to growing cells for 6 h in the dark, whereas chlorophyll accumulation in cells without gabaculine began immediately after transfer to light. Extractable ALA synthase activity from gabaculine-pretreated dark-grown cells was initially lower than the activity from untreated cells, but it did not undergo a further decline after transfer of the cells to the light, whereas the activity from untreated cells dropped to less than one eighth the dark level after 2 h in the light, and by 4 h had fallen to a level five times lower than that extractable from gabaculine-treated cells. These results suggest that suppression of ALA synthase activity by light in untreated cells is related to light-induced activation of the five-carbon ALA biosynthetic pathway in the plastids, and may result from a contribution by a product of the five-carbon pathway to non-plastid tetrapyrrole pools in the light.  相似文献   

13.
As is well known from earlier studies, the genotoxic effect of lead exposure was partly attributed to the formation of the highly reactive oxygen metabolites (ROMs) in the blood. However, lead ions have no ability to generate ROMs. Therefore, the recently published studies paid more attention to the role of δ-aminolevulinic acid (ALA) accumulation in lead-induced DNA damage. If the above-mentioned assumptions were taken into consideration, it seemed a reasonable approach to study the possible protective effects of antioxidants against genotoxic effects of lead. According to our results, N-acetylcysteine (NAC) and melatonin (MEL) were able to reduce significantly (p < 0.05) the lead- and ALA-induced sister chromatid exchange frequencies in human lymphocytes in vitro. In spite of a relative reduction in the lead- and ALA-induced micronucleus formation in human lymphocytes, the reduction was not statistically significant (p > 0.05). These results could be evaluated as supportive evidence for the hypothesis that increased antioxidant capacity of cells might fortify the efficiency of protective pathways against cytogenetic damage in lead exposure.  相似文献   

14.
Cadmium toxicity has been extensively studied in plants, however its biochemical mechanism of action has not yet been well established. To fulfil this objective, four-weeks-old soybean nodulated plants were treated with 200 μM Cd2+ for 48 h. δ-aminolevulinic acid dehydratase (ALA-D, E.C. 4.2.1.24) activity and protein expression, as well as δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) concentrations were determined in nodules, roots and leaves. In vitro experiments carried out in leaves were performed using leaf discs to evaluate the oxidant and antioxidant properties of ALA and S-adenosyl-l-methinone (SAM), respectively. Oxidative stress parameters such as thiobarbituric acid reactive substances (TBARS) and GSH levels as well as superoxide dismutase (SOD, E.C. 1.15.1.1), and guaiacol peroxidase (GPOX, E.C. 1.11.1.7) were also determined. Cadmium treatment caused 100% inhibition of ALA-D activity in roots and leaves, and 72% inhibition in nodules whereas protein expression remained unaltered in the three studied tissues. Plants accumulated ALA in nodules (46%), roots (2.5-fold) and leaves (104%), respect to controls. From in vitro experiments using leaf discs, exposed to ALA or Cd2+, it was found that TBARS levels were enhanced, while GSH content and SOD and GPOX activities and expressions were diminished. The protective role of SAM against oxidative stress generated by Cd2+ and ALA was also demonstrated. Data presented in this paper let us to suggest that accumulation of ALA in nodules, roots and leaves of soybean plants due to treatment with Cd2+ is highly responsible for oxidative stress generation in these tissues.  相似文献   

15.
Summary Five eceriferum, (cer) mutants in barley which influence -diketone and hydroxy--diketone synthesis in spike and internode epicuticular waxes have been characterized. The mutation cer-u 69 blocks the synthesis of hydroxy--diketones and leads to a compensatory increase in the amount of -diketones, indicating that -diketones are precursors of the hydroxy--diketones. Furthermore, highly lobed wax plates were observed for the first time on barley lemmas, in addition to the characteristic wax tubes. Both diketone classes are selectively and proportionally reduced in the spike wax of cer-i 16, which has shorter wax tubes. The three mutants cer-c 36, -q 42, and -c,u 108 synthesize neither diketone class and form no wax tubes. In contrast to the variable composition of most individual barley wax classes, only a single -diketone was identified, namely hentriacontan-14,16-dione.  相似文献   

16.
The rate limiting enzyme of heme biosynthesis, δ-aminolevulinic acid synthetase (ALA synthetase), and the second enzyme in the heme biosynthetic pathway, δ-aminolevulinic acid dehydrase (ALA dehydrase), were inhibited by the olefinic amino acid L-2-amino-4-methoxy - trans-3-butenoic acid (AMTB). Administration of AMTB (20 mg/kg; i.p.) to rats inhibited ALA synthetase and ALA dehydrase in control animals and in animals with markedly elevated activity of ALA synthetase which resulted from the administration of 3,5-dicarbethoxy-1,4-dimethyl-collidine (DDC, 200 mg/kg, i.p.) or allylisopropylacetamide (200 mg/kg, s.c.). AMTB also blocked the synthesis of rat hepatic porphyrins and inhibited the increase in the urinary excretion of δ-aminolevulinic acid and porphobilinogen following DDC (150 mg/kg, p.o.) administration. Preincubation of AMTB with liver mitochondria or a soluble fraction of liver decreased the activity of mitochondrial ALA synthetase and soluble ALA dehydrase, respectively.  相似文献   

17.
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.  相似文献   

18.
The conversion of oxyhemoglobin to mathemoglobin has been shown via spectrophotometric, circular dichroism and polarographic studies to be accelerated by δ-aminolevulinic acid, a major heme-precursor accumulated in a number of heme-linked pathologies. Concomitantly, δ-aminolevulinic acid undergoes aerobic oxidation. The intermediacy of oxygen radicals in these processes was evidenced by the inhibitory effect of catalase, superoxide dismutase and mannitol. These results are relevant to the exacerbated production of active oxygen species in intermittent acute porphyria and saturnism carriers.  相似文献   

19.
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.  相似文献   

20.
Treatment of cancer cells by clinically approved hexyl ester of 5-aminolevulinic acid (ALA-Hex) induces accumulation of fluorescent porphyrins in tumors. This allows fluorescence photodiagnosis (PD) of bladder cancer by blue light illumination. However, PD of other cancers is hampered by acute toxicity of the compound limiting its use to local applications. We have designed and synthesized a new prodrug of ALA-Hex that tackles the stability-activity paradox of amino-modified 5-ALA prodrugs. The glucuronide prodrug Glu-ALA-Hex demonstrates excellent stability under physiological conditions and activation in the presence of the target enzyme. β-glucuronidase-triggered release of 5-ALA is programmed to yield fluorescence in tumor environment with elevated β-glucuronidase activity, a characteristic of many solid tumors. Glu-ALA-Hex produces similar levels of fluorescence as ALA-Hex in breast cancer MCF7 cells in vitro but with much lower non-specific cell toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号