首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When cultures of Brachyspira hyodysenteriae were grown under a wide range of in vitro conditions, at least 1% of the cells formed spherical bodies different to the normal helical form. This percentage increased considerably in aging cultures or following their incubation in caramelized media. Spherical body formation was initiated from a terminal localized swelling of the outer sheath followed by a retraction of the protoplasmic cylinder into the resulting swollen vesicle. As this occurred, the periplasmic flagella seemed to unwind from the protoplasmic cylinder. Once retracted, the protoplasmic cylinder was found to be wrapped in an organized manner around the inner surface of the membrane of the swollen vesicle. Although most were 2-3 microm in diameter, some much larger spherical bodies (6-12 microm diameter) were occasionally seen, with a corresponding increase in the visible number of peripheral protoplasmic cylinder cross-sections. Spherical bodies from older cultures did not contain protoplasmic cylinders arranged around the periphery, but instead were characterized by the presence of a centrally located, electron-dense body c. 0.5-0.8 mum in diameter. Brachyspira hyodysenteriae spherical bodies differ in both their structural organization and probable method of formation from similar structures described in other spirochaete genera.  相似文献   

2.
The surface and inner structure of the spherical bodies (SB) produced by the human oral treponeme strain G7201, similar to Treponema macrodentium, were studied by electron microscopy. Ultrathin sectioning and scanning techniques demonstrated that in the presence of a high concentration of sucrose, the outer envelope of one or both terminal ends of this oral spirochete changed into a swollen structure, the SB. Spirochetal cells adhered firmly to the surface of the resultant body. The membrane of the SB, i.e. the outer envelope, enclosed the coiled protoplasmic cylinder and five axial fibrils which were located between the envelope and the cylinder. Large expanded protoplasmic cylinders were observed, surrounded by a partially disrupted double membrane in some SBs. A number of frizzly fibrous structures, which differed from axial fibrils in number and shape, were also observed within these SBs. Except for abnormal or partially broken cylinders, the protoplasmic cylinders tended to be located close to the inner surface of the SB membrane, resulting in a central vacant space with occasional axial fibrils. These findings suggest that the oral spirochete produces an SB by terminal expansion of the outer envelope in the presence of high concentrations of sucrose. The outer envelope of the SB, which consists of two electron-dense layers, has the property of binding spirochetal cells to its outer layer and the protoplasmic cylinder and axial fibrils to the inner layer. Some protoplasmic cylinders were also observed to be swollen in the presence of high sucrose concentrations.  相似文献   

3.
Bradyrhizobium japonicum USDA 110 synthesized both extracellular and periplasmic polysaccharides when grown on mannitol minimal medium. The extracellular polysaccharides were separated into a high-molecular-weight acidic capsular extracellular polysaccharide fraction (90% of total hexose) and three lower-molecular-weight glucan fractions by liquid chromatography. Periplasmic glucans, extracted from washed cells with 1% trichloroacetic acid, gave a similar pattern on liquid chromatography. Linkage analysis of the major periplasmic glucan fractions demonstrated mainly 6-linked glucose (63 to 68%), along with some 3,6- (8 to 18%), 3- (9 to 11%), and terminal (7 to 8%) linkages. The glucose residues were β-linked as shown by 1H-nuclear magnetic resonance analysis. Glucan synthesis by B. japonicum cells grown on mannitol medium with 0 to 350 mM fructose as osmolyte was measured. Fructose at 150 mM or higher inhibited synthesis of periplasmic and extracellular 3- and 6-linked glucans but had no effect on the synthesis of capsular acidic extracellular polysaccharides.  相似文献   

4.
Electron cryotomography was used to analyze the structure of the Lyme disease spirochete, Borrelia burgdorferi. This methodology offers a new means for studying the native architecture of bacteria by eliminating the chemical fixing, dehydration, and staining steps of conventional electron microscopy. Using electron cryotomography, we noted that membrane blebs formed at the ends of the cells. These blebs may be precursors to vesicles that are released from cells grown in vivo and in vitro. We found that the periplasmic space of B. burgdorferi was quite narrow (16.0 nm) compared to those of Escherichia coli and Pseudomonas aeruginosa. However, in the vicinity of the periplasmic flagella, this space was considerably wider (42.3 nm). In contrast to previous results, the periplasmic flagella did not form a bundle but rather formed a tight-fitting ribbon that wraps around the protoplasmic cell cylinder in a right-handed sense. We show how the ribbon configuration of the assembled periplasmic flagella is more advantageous than a bundle for both swimming and forming the flat-wave morphology. Previous results indicate that B. burgdorferi motility is dependent on the rotation of the periplasmic flagella in generating backward-moving waves along the length of the cell. This swimming requires that the rotation of the flagella exerts force on the cell cylinder. Accordingly, a ribbon is more beneficial than a bundle, as this configuration allows each periplasmic flagellum to have direct contact with the cell cylinder in order to exert that force, and it minimizes interference between the rotating filaments.  相似文献   

5.
The primary amine coupling reagents succinimidyl-6-biotinamido-hexanoate (NHS-A-biotin) and sulfosuccinimidyl-6-biotinamido-hexanoate (NHS-LC-biotin) were tested for their ability to selectively label Escherichia coli cell envelope proteins in vivo. Probe localization was determined by examining membrane, periplasmic, and cytosolic protein fractions. Both hydrophobic NHS-A-biotin and hydrophilic NHS-LC-biotin were shown to preferentially label outer membrane, periplasmic, and inner membrane proteins. NHS-A- and NHS-LC-biotin were also shown to label a specific inner membrane marker protein (Tet-LacZ). Both probes, however, failed to label a cytosolic marker (the omega fragment of beta-galactosidase). The labeling procedure was also used to label E. coli cells grown in low-salt Luria broth medium supplemented with 0, 10, and 20% sucrose. Outer membrane protein A (OmpA) and OmpC were labeled by both NHS-A- and NHS-LC-biotin at all three sucrose concentrations. In contrast, OmpF was labeled by NHS-A-biotin but not by NHS-LC-biotin in media containing 0 and 10% sucrose. OmpF was not labeled by either NHS-A- or NHS-LC-biotin in E. coli cells grown in medium containing 20% sucrose. Coomassie-stained gels, however, revealed similar quantities of OmpF in E. coli cells grown at all three sucrose concentrations. These data indicate that there was a change in outer membrane structure due to increased osmolarity, which limits accessibility of NHS-A-biotin to OmpF.  相似文献   

6.
Bacillus licheniformis strain 749/C (constitutive for penicillinase formation) and uninduced cells of strain 749 (penicillinase-inducible) were examined after freezeetching. In the early stationary phase, strain 749/C organisms had clusters of vesicles (30 to 40 nm in diameter) on the outer surface of the plasma membrane. These are randomly distributed on the membrane, including the region of septum formation. The vesicles are not intimately associated with the plasma membrane, and their inner and outer surfaces are devoid of particles. Periplasmic vesicles were not detected by freeze-etching in strain 749 (uninduced) or in young cells of 749/C; however, the membrane of mid-logarithmic phase 749/C cells had a corrugated appearance. Negatively stained 749/C cells (logarithmic phase) also showed many vesicular and tubular bodies in the periplasm as well as septal and cytoplasmic mesosomes of typical morphology. The periplasmic structures appear to be formed either by evagination of plasma membrane or by migration of vesicular bodies from the membranous pockets of the cytoplasm. Stationary phase cells of 749/C still have many periplasmic vesicular bodies; however, the mesosomes are greatly reduced both in number and size. In sharp contrast, strain 749 organisms have very few structures similar to the periplasmic bodies of strain 749/C. These findings support our previous view that penicillinase-producing cells of 749/C have periplasmic membranous structures that are rare in the uninduced strain 749, though there is some lack of correspondence between freeze-etching, negative staining, and thin section data. These structures may be important for the retention or storage of penicillinase in the cell.  相似文献   

7.
Scanning electron microscopy (SEM) shows remarkable morphological surface changes in Sphingopyxis sp. 113P3 cells grown in polyvinyl alcohol (PVA) but not in Luria–Bertani medium (LB) (Hu et al. in Arch Microbiol 188: 235–241, 2007). However, transmission electron microscopy showed no surface changes in PVA-grown cells and revealed the presence of polymer bodies in the periplasm of PVA-grown cells, which were not observed in LB-grown cells. The presence of polymer bodies was supported by low-vacuum SEM observation of PVA- and LB-grown cells of strain 113P3, and the presence of similar polymer bodies was also found when Sphingopyxis macrogoltabida 103 and S. terrae were grown in polyethylene glycol (PEG). The extraction of PVA and PEG from the periplasmic fraction of cells using a modified Anraku and Heppel method and their analysis by MALDI–TOF mass spectrometry strongly suggested that the polymer bodies are composed of PVA and PEG, respectively, in Sphingopyxis sp. 113P3 (PVA degrader) and Sphingopyxis macrogoltabida 103 or S. terrae (PEG degraders). PEG-grown S. macrogoltabida 103 and S. terrae showed higher transport of 14C-PEG 4000 than LB-grown cells. Recombinant PegB (TonB-dependent receptor-like protein consisting of a barrel structure) interacted with PEG 200, 4000 and 20000, suggesting that the barrel protein in the outer membrane contributes to the transport of PEG into the periplasm.  相似文献   

8.
Bradyrhizobium japonicum USDA 110 synthesized both extracellular and periplasmic polysaccharides when grown on mannitol minimal medium. The extracellular polysaccharides were separated into a high-molecular-weight acidic capsular extracellular polysaccharide fraction (90% of total hexose) and three lower-molecular-weight glucan fractions by liquid chromatography. Periplasmic glucans, extracted from washed cells with 1% trichloroacetic acid, gave a similar pattern on liquid chromatography. Linkage analysis of the major periplasmic glucan fractions demonstrated mainly 6-linked glucose (63 to 68%), along with some 3,6- (8 to 18%), 3- (9 to 11%), and terminal (7 to 8%) linkages. The glucose residues were beta-linked as shown by H-nuclear magnetic resonance analysis. Glucan synthesis by B. japonicum cells grown on mannitol medium with 0 to 350 mM fructose as osmolyte was measured. Fructose at 150 mM or higher inhibited synthesis of periplasmic and extracellular 3- and 6-linked glucans but had no effect on the synthesis of capsular acidic extracellular polysaccharides.  相似文献   

9.
Members of the bacterial phylum Spirochaetes are generally helical cells propelled by periplasmic flagella. The spirochete Treponema primitia is interesting because of its mutualistic role in the termite gut, where it is believed to cooperate with protozoa that break down cellulose and produce H2 as a by-product. Here we report the ultrastructure of T. primitia as obtained by electron cryotomography of intact, frozen-hydrated cells. Several previously unrecognized external structures were revealed, including bowl-like objects decorating the outer membrane, arcades of hook-shaped proteins winding along the exterior and tufts of fibrils extending from the cell tips. Inside the periplasm, cone-like structures were found at each pole. Instead of the single peptidoglycan layer typical of other Gram-negative bacteria, two distinct periplasmic layers were observed. These layers formed a central open space that contained two flagella situated adjacent to each other. In some areas, the inner membrane formed flattened invaginations that protruded into the cytoplasm. High-speed light microscopic images of swimming T. primitia cells showed that cell bodies remained rigid and moved in a helical rather than planar motion. Together, these findings support the 'rolling cylinder' model for T. primitia motility that posits rotation of the protoplasmic cylinder within the outer sheath.  相似文献   

10.

Background

In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated.

Results

The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III).

Conclusion

This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction. Periplasmic uranium accumulation may reflect the ability of uranium to penetrate the outer membrane rather than the occurrence of enzymatic U(VI) reduction. Elimination of cytochromes rarely had a similar impact on both Fe(III) and U(VI) reduction, suggesting that there are differences in the routes of electron transfer to U(VI) and Fe(III). Further studies are required to clarify the pathways leading to U(VI) reduction in G. sulfurreducens.  相似文献   

11.
Cellulases (EC 3.2.1.4) of a Cytophaga species WTHC 2421 (ATCC 29474) were found in the soluble portion of the cell (the periplasm and the cytoplasm) and on the membrane. Cell-free cellulases were not found. Most of the carboxymethylcellulase activity associated with reduction of viscosity was membrane bound, whereas most of the carboxymethylcellulose (CMC) saccharifying activity was soluble. The CMC-saccharifying activity was increased 534 X by purification procedures which included ammonium sulfate precipitation and molecular exclusion chromatography with Sephadex G-75 and Biogel p-100. Periplasmic carboxymethycellulase had a molecular weight of 6250 and cytoplasmic carboxymethylcellulase had a molecular weight of 8650. Analytical ultracentrifugation of the periplasmic carboxymethylcellulase (CMCase) indicated that it had a low molecular density. The chromatographic fraction containing periplasmic CMCase also contained enzyme activity against crystalline cellulose. The activity against crystalline cellulose was 238 X higher than the activity shown by the whole cell. The reaction of the enzyme with either CMC or dewaxed cotton produced only glucose. The enzyme was slightly inhibited by the presence of 0.01% (w/v) glucose, lactose, or cellobiose, but it was not affected by sucrose, and exhibited increased activity in the presence of xylose and fructose.  相似文献   

12.
Chlamydia psittaci (6BC) was grown in yolk sac explants and in L cells and fixed by perfusion in situ to provide undamaged material for comparison with gram-negative bacteria. Reticulate, intermediate, and elementary bodies were all seen to lack a well-defined periplasmic space; intermediate and elementary bodies showed condensations of the nucleoid which differ from common bacterial configurations; and the cytoplasm of highly condensed elementary bodies was much more electron dense than that of the gram-negative bacteria, while retaining its basically particulate nature. These important morphological distinctions are interpreted as reflections of a significantly different cellular level of organization in these two groups of organisms. No important morphological differences were noted in comparisons of the chlamydial particles grown in the two different host systems.  相似文献   

13.
Periplasmic adaptor proteins are essential components of bacterial tripartite multidrug efflux pumps. Here we report the 2.35 Å resolution crystal structure of the BesA adaptor from the spirochete Borrelia burgdorferi solved using selenomethionine derivatized protein. BesA shows the archetypal linear, flexible, multi-domain architecture evident among proteobacteria and retains the lipoyl, β-barrel and membrane-proximal domains that interact with the periplasmic domains of the inner membrane transporter. However, it lacks the α-hairpin domain shown to establish extensive coiled-coil interactions with the periplasmic entrance helices of the outer membrane-anchored TolC exit duct. This has implications for the modelling of assembled tripartite efflux pumps.  相似文献   

14.
The structure of the epithelial cells of the alimentary tract of Fasciola hepatica was investigated by means of light and electron microscopy. Tissue prepared for electron microscopy was fixed in 1 per cent osmium tetroxide, buffered with veronal to a pH of 7.4, and embedded in butyl methacrylate with 1 per cent benzoyl peroxide as a catalyst. Polymerisation was carried out at 60°C. The majority, if not all, the epithelial cells pass through both absorptive and secretory cycles. The free ends of absorptive cells possess fine protoplasmic processes that project into the lumen of the gut. These are apparently concerned with the absorption of nutriment. In electron micrographs, the protoplasmic (absorptive) processes are frequently seen to be in the form of tubular loops both ends of which arise from the same cell. The free end of a process is often expanded into a ribbon-like structure. Each process possesses an external limiting membrane and an internal membranous ultrastructure. When a cell becomes glandular in function, the protoplasmic processes seem to become less numerous. The plasma membrane is invaginated into the basal part of an absorptive cell. In the neighbourhood of the lumen of the gut where two tall cells are in contact, bands of amorphous cytoplasmic material are in contact with each cell membrane.  相似文献   

15.
Cell envelopes (cell wall and cell membrane) from aerobically grown cells of Rhodopseudomonas spheroides were isolated and purified by a combination of differential centrifugation and centrifugation through 40% sucrose. Cell envelope protein from aerobically grown cells was resolved by dodecyl sulphate-polyacrylamide gel electrophoresis. Biochemical characterization of selected envelope membrane proteins demonstrated heterogeneity between different protein species. Amino acid analyses of individual proteins revealed between 50–60 mole% nonpolar residues.Envelope membranes derived from anaerobically grown cells were also isolated and purified by a combination of differential centrifugation, column chromatography on Sepharose 2B, and centrifugation in 40% sucrose. The dodecyl sulphate-polyacrylamide gel patterns of anaerobic and aerobic envelope membrane proteins were very similar and the results suggest a common protein structure.  相似文献   

16.
PREPARATION OF PLASMA MEMBRANE FROM ISOLATED NEURONS   总被引:5,自引:3,他引:5  
A bulk fraction enriched with respect to neuronal cell bodies was used as starting material for the isolation of neuronal plasma membrane The cells were gently homogenized in isotonic sucrose and a crude membrane containing fraction sedimented at 3000 g. Subsequently, the membrane fraction was purified on a discontinuous sucrose density gradient between 35% and 25 5% sucrose (w/w). Enzymatic analyses showed a 4–5-fold enrichment in plasma membrane markers, and a 10–15% contamination of mitochondrial and microsomal material. Electron micrographs of the membrane fraction confirmed the enzymatic data Fragmented membranes were found, mainly in vesicular form No ribosomes, but a few mitochondria and some multilamellar membranes were seen  相似文献   

17.
By using freeze-fracture electron microscopy, chromatophores and spheroplast-derived membrane vesicles from photosynthetically grown Rhodopseudomonas sphaeroides were compared with cytoplasmic membrane and intracellular vesicles of whole cells. In whole cells, the extracellular fracture faces of both cytoplasmic membrane and vesicles contained particles of 11-nm diameter at a density of about 5 particles per 10(4) nm2. The protoplasmic fracture faces contained particles of 11 to 12-nm diameter at a density of 14.6 particles per 10(4) nm2 on the cytoplasmic membrane and a density of 31.3 particles per 10(4) nm2 on the vesicle membranes. The spheroplast-derived membrane fraction consisted of large vesicles of irregular shape and varied size, often enclosing other vesicles. Sixty-six percent of the spheroplast-derived vesicles were oriented in the opposite way from the intracellular vesicle membranes of whole cells. Eighty percent of the total vesicle surface area that was exposed to the external medium (unenclosed vesicles) showed this opposite orientation. The chromatophore fractions contained spherical vesicles of uniform size approximately equal to the size of the vesicles in whole cells. The majority (79%) of the chromatophores purified on sucrose gradients were oriented in the same way as vesicles in whole cells, whereas after agarose filtration almost all (97%) were oriented in this way. Thus, on the basis of morphological criteria, most spheroplast-derived vesicles were oriented oppositely from most chromatophores.  相似文献   

18.
Sulfurospirillum multivorans is a dehalorespiring organism, which is able to utilize tetrachloroethene as terminal electron acceptor in an anaerobic respiratory chain. The localization of the tetrachloroethene reductive dehalogenase in dependence on different growth substrates was studied using the freeze-fracture replica immunogold labeling technique. When the cells were grown with pyruvate plus fumarate, a major part of the enzyme was either localized in the cytoplasm or membrane associated facing the cytoplasm. In cells grown on pyruvate or formate as electron donors and tetrachloroethene as electron acceptor, most of the enzyme was detected at the periplasmic side of the cytoplasmic membrane. These results were confirmed by immunoblots of the enzyme with and without the twin arginine leader peptide. Trichloroethene exhibited the same effect on the enzyme localization as tetrachloroethene. The data indicated that the localization of the enzyme was dependent on the electron acceptor utilized.  相似文献   

19.
Summary Changes in the plasma membrane surface and in the cortical cytoplasm during wound healing in giant green algal cells ofErnodesmis verticillata (Kützing) Brgesen were followed using scanning and transmission electron microscopy. Microvillus-like structures that contain cytoplasmic and cytoskeletal constituents were observed emanating from the surface of the plasma membrane at the retracting/cut end of wounded cells. These delicate structures seem to be remnants of cell wall-plasmalemma connections that draw out the plasma membrane and cortical components from the contracting cytoplasm as it pulls away from the cell wall. Most of these connections break during wound healing and, when contraction stops, the microvillus-like protrusions become progressively shorter. In cells treated with a calmodulin antagonist (W-7), a number of distinctive bodies accumulate that are of unknown composition, are oblong in shape, and have a diameter slightly smaller than the protoplasmic protrusions. Ultrastructural and other data indicate that these bodies result from retrieved constituents of the plasma-membrane protrusions, as they do not accumulate in unwounded drugtreated cells or in cells treated in W-5. These findings suggest that the protoplasmic protrusions accumulate membrane and cytoplasmic components that are retrieved and recycled during wound healing inErnodesmis by a novel mechanism. The combined plasma membrane surfaces of the microvillus-like protrusions may help to account for the drastic decrease in surface area that occurs during wound healing.Abbreviations SEM scanning electron microscopy - TEM transmission electron microscopy - W-7 N-[6-aminohexyl]-5-chloro-1-naph-thalenesulfonamide - W-5 N-[6-aminohexyl]-1-naphthalenesulfonamide  相似文献   

20.
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号