首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PDK-1 is a protein kinase that is critical for the activation of many downstream protein kinases in the AGC superfamily, through phosphorylation of the activation loop site on these substrates. Cells lacking PDK-1 show decreased activity of these protein kinases, including protein kinase B (PKB) and p70S6K, whereas mTOR activity remains largely unaffected. Here we show, by assessing both association of cellular RNAs with polysomes and by metabolic labeling, that PDK-1-/- embryonic stem (ES) cells exhibit defects in mRNA translation. We identify which mRNAs are most dramatically translationally regulated in cells lacking PDK-1 expression by performing microarray analysis of total and polysomal RNA in these cells. In addition to the decreased translation of many RNAs, a smaller number of RNAs show increased association with polyribosomes in PDK-1-/- ES cells relative to PDK-1+/+ ES cells. We show that PKB activity is a critical downstream component of PDK-1 in mediating translation of cystatin C, RANKL, and Rab11a, whereas mTOR activity is less important for effective translation of these targets.  相似文献   

3.
Kato Y  Ozaki N  Yamada T  Miura Y  Oiso Y 《Life sciences》2007,80(5):476-483
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.  相似文献   

4.
Chen H  Nystrom FH  Dong LQ  Li Y  Song S  Liu F  Quon MJ 《Biochemistry》2001,40(39):11851-11859
Phosphoinositide-dependent kinase-1 (PDK-1) is a serine-threonine kinase downstream from PI 3-kinase that phosphorylates and activates other important kinases such as Akt that are essential for cell survival and metabolism. Previous reports have suggested that PDK-1 has constitutive catalytic activity that is not regulated by stimulation of cells with growth factors. We now show that insulin stimulation of NIH-3T3(IR) cells or rat adipose cells may significantly increase the intrinsic catalytic activity of PDK-1. Insulin treatment of NIH-3T3(IR) fibroblasts overexpressing PDK-1 increased both phosphorylation of recombinant PDK-1 in intact cells and PDK-1 kinase activity in an immune-complex kinase assay. Insulin stimulation of rat adipose cells also increased catalytic activity of endogenous PDK-1 immunoprecipitated from the cells. Both insulin-stimulated phosphorylation and activity of PDK-1 were inhibited by wortmannin and reversed by treatment with the phosphatase PP-2A. A mutant PDK-1 with a disrupted PH domain (W538L) did not undergo phosphorylation or demonstrate increased kinase activity in response to insulin stimulation. Similarly, a PDK-1 phosphorylation site point mutant (S244A) had no increase in kinase activity in response to insulin stimulation. Thus, the insulin-stimulated increase in PDK-1 catalytic activity may involve PI 3-kinase- and phosphorylation-dependent mechanisms. We conclude that the basal constitutive catalytic activity of PDK-1 in NIH-3T3(IR) cells and rat adipose cells can be significantly increased upon insulin stimulation.  相似文献   

5.
The hydrolysis of cyclic nucleotide second messengers takes place through multiple cyclic nucleotide phosphodiesterases (PDEs). The significance of this diversification is not fully understood. Here we report the differential regulation of low K(m) Ca2+-activated (PDE1C) and Ca2+-independent, rolipram-sensitive (PDE4) PDEs by protein phosphorylation in the neuroendocrine cell line AtT20. Incubation of cells with 8-(4-chlorophenylthio)-cyclic AMP (CPT-cAMP) enhanced PDE4 and reduced PDE1C activity. These effects were blocked by H89 indicating mediation by cAMP-dependent protein kinase (PKA), furthermore in broken cell preparations PKA produced the same reciprocal changes of PDE activities. Calyculin A, an inhibitor of protein phosphatases 1 and 2 A, stimulated PDE4 and enhanced the inhibitory effect of CPT-cAMP on PDE1C. The reduction of PDE1C activity was characterized by a marked attenuation of the activation by Ca2+/calmodulin. Stimulation of PDE4 activity by CPT-cAMP or calyculin A was attributable to PDE4D3 and these effects could also be reproduced in human embryonic kidney cells expressing epitope-tagged PDE4D3. Together, these data show reciprocal regulation of PDE1C and PDE4D by PKA, which represents a novel scheme for plasticity in intracellular signalling.  相似文献   

6.
We identified 1-(5 chloronaphthalenesulfonyl)-1H-hexahydro-1, 4-diazepine, also known as ML-9, as a powerful inhibitor of PKB activity in different cells as well as of recombinant PKB. It also inhibits other downstream serine/threonine kinases, such as PKA and p90 S6 kinase, but not upstream tyrosine phosphorylation or PI3-kinase activation in response to insulin. We compared the effects of ML-9 and wortmannin on several insulin-stimulated effects in isolated rat fat cells. Both ML-9 and wortmannin inhibited glucose transport and GLUT4/IGF II receptor translocation to the plasma membrane. In contrast, only wortmannin inhibited the antilipolytic effect and PDE3B activation by insulin. Thus, ML-9 inhibits PKB but not PI3-kinase activation in response to insulin and is useful to differentiate between these effects. Both PI3-kinase and PKB are important for glucose transport and intracellular protein translocation while PKB does not appear to play an important role for the antilipolytic effect or activation of PDE3B in response to insulin.  相似文献   

7.
The metabolic actions of insulin are transduced through the phosphatidylinositol 3-kinase pathway. A critical component of this pathway is 3-phosphoinositide-dependent kinase-1 (PDK-1), a PH domain-containing enzyme that catalyzes the activating phosphorylation for many AGC kinases, including Akt and protein kinase C isozymes. We used a directed proteomics-based approach to identify the adaptor protein Grb14, which binds the insulin receptor through an SH2 domain, as a novel PDK-1 binding partner. Interaction of these two proteins is constitutive and mediated by a PDK-1 binding motif on Grb14. Disruption of this motif by point mutation or deletion of the Grb14 SH2 domain prevents the insulin-triggered membrane translocation of PDK-1. The interaction of PDK-1 with Grb14 facilitates Akt function: disruption of the interaction by overexpression of a construct of Grb14 mutated in the PDK-1 binding motif significantly decreases insulin-dependent activation of Akt. Thus, Grb14 serves as an adaptor protein to recruit PDK-1 to activated insulin receptor, thus promoting Akt phosphorylation and transduction of the insulin signal.  相似文献   

8.
Adrenaline and insulin are two of the most important hormones regulating a number of physiological processes in skeletal muscle. Insulin's effects are generally requiring PKB and adrenaline effects cAMP and PKA. Recent evidence indicates cAMP can regulate PKB in some cell types via Epac (Exchange protein directly activated by cAMP). This suggests possible crossover between insulin and adrenaline signalling in muscle. Here we find that adrenaline alone did not influence PKB activation, but adrenaline dramatically potentiated insulin-stimulated phosphorylation of PKB (both Ser473 and Thr308) and of PKBalpha and PKBbeta enzyme activities. These effects were inhibited by wortmannin but adrenaline did not increase insulin-stimulated p85alpha PI 3-kinase activity. Adrenaline effects occurred via beta-adrenergic receptors and accumulation of cAMP. Interestingly, the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP potentiated insulin-stimulated PKB phosphorylation in a similar manner as adrenaline did without activating glycogen phosphorylase. Inhibition of PKA by H89 decreased adrenaline-stimulated glycogen phosphorylase activation but increased PKB activation, which further supports that adrenaline increases insulin-stimulated PKB phosphorylation via Epac. Further, while adrenaline and the Epac activator alone did not promote p70(S6K) Thr389 phosphorylation, they potentiated insulin effects. In conclusion, adrenaline potentiates insulin-stimulated activation of PKB and p70(S6K) via cAMP and Epac in skeletal muscle. Furthermore, the fact that adrenaline alone did not activate PKB or p70(S6K) suggests that a hormone can be a potent regulator of signalling despite no effects being seen when co-activators are lacking.  相似文献   

9.
Phosphorylation by the phosphoinositide-dependent kinase, PDK-1, is required for the activation of diverse members of the AGC family of protein kinases, including the protein kinase C (PKC) isozymes. Here we explore the subcellular location of the PDK-1-mediated phosphorylation of conventional PKCs, and we address whether this phosphorylation is regulated by phosphoinositide 3-kinase. Pulse-chase experiments reveal that newly synthesized endogenous PKC alpha is primarily phosphorylated in the membrane fraction of COS-7 cells, where it is processed to a species that is phosphorylated at the activation loop and at two carboxyl-terminal positions. This "mature" species is then released into the cytosol. Deletion of the plekstrin homology domain of PDK-1 results in a 4-fold increase in the rate of processing of PKC indicating an autoinhibitory role for this domain. Autoinhibition by the plekstrin homology domain is not relieved by binding 3'-phosphoinositides; PKC is phosphorylated at a similar rate in serum-treated cells and serum-starved cells treated with the phosphoinositide 3-kinase inhibitors, LY294002 and wortmannin. Under the same conditions, the PDK-1-catalyzed phosphorylation of another substrate, Akt/protein kinase B, is abolished by these inhibitors. Our data are consistent with a model in which PDK-1 phosphorylates newly synthesized PKC by a mechanism that is independent of 3'-phosphoinositides.  相似文献   

10.
The identification of phosphoinositide-dependent kinase-1 (PDK-1) as an activating kinase for members of the AGC family of kinases has led to its implication as the activating kinase for cAMP-dependent protein kinase. It has been established in vitro that PDK-1 can phosphorylate the catalytic (C) subunit (), but the Escherichia coli-expressed C-subunit undergoes autophosphorylation. To assess which of these mechanisms occurs in mammalian cells, a set of mutations was engineered flanking the site of PDK-1 phosphorylation, Thr-197, on the activation segment of the C-subunit. Two distinct requirements appeared for autophosphorylation and phosphorylation by PDK-1. Autophosphorylation was disrupted by mutations that compromised activity (Thr-201 and Gly-200) or altered substrate recognition (Arg-194). Conversely, only residues peripheral to Thr-197 altered PDK-1 phosphorylation, including a potential hydrophobic PDK-1 binding site at the C terminus. To address the in vivo requirements for phosphorylation, select mutant proteins were transfected into COS-7 cells, and their phosphorylation state was assessed with phospho-specific antibodies. The phosphorylation pattern of these mutant proteins indicates that autophosphorylation is not the maturation mechanism in the eukaryotic cell; instead, a heterologous kinase with properties resembling the in vitro characteristics of PDK-1 is responsible for in vivo phosphorylation of PKA.  相似文献   

11.
In rat adipocytes, insulin provoked rapid increases in (a) endogenous immunoprecipitable combined protein kinase C (PKC)-zeta/lambda activity in plasma membranes and microsomes and (b) immunoreactive PKC-zeta and PKC-lambda in GLUT4 vesicles. Activity and autophosphorylation of immunoprecipitable epitope-tagged PKC-zeta and PKC-lambda were also increased by insulin in situ and phosphatidylinositol 3,4,5-(PO(4))(3) (PIP(3)) in vitro. Because phosphoinositide-dependent kinase-1 (PDK-1) is required for phosphorylation of activation loops of PKC-zeta and protein kinase B, we compared their activation. Both RO 31-8220 and myristoylated PKC-zeta pseudosubstrate blocked insulin-induced activation and autophosphorylation of PKC-zeta/lambda but did not inhibit PDK-1-dependent (a) protein kinase B phosphorylation/activation or (b) threonine 410 phosphorylation in the activation loop of PKC-zeta. Also, insulin in situ and PIP(3) in vitro activated and stimulated autophosphorylation of a PKC-zeta mutant, in which threonine 410 is replaced by glutamate (but not by an inactivating alanine) and cannot be activated by PDK-1. Surprisingly, insulin activated a truncated PKC-zeta that lacks the regulatory (presumably PIP(3)-binding) domain; this may reflect PIP(3) effects on PDK-1 or transphosphorylation by endogenous full-length PKC-zeta. Our findings suggest that insulin activates both PKC-zeta and PKC-lambda in plasma membranes, microsomes, and GLUT4 vesicles by a mechanism requiring increases in PIP(3), PDK-1-dependent phosphorylation of activation loop sites in PKC-zeta and lambda, and subsequent autophosphorylation and/or transphosphorylation.  相似文献   

12.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

13.
Integrins in resting leukocytes are poorly adhesive, and cell activation is required to induce integrin-mediated adhesion. We recently demonstrated a close correlation between phosphorylation of Ser(5) in L-plastin (LPL), a leukocyte-specific 67-kDa actin bundling protein, and activation of alpha(M)beta(2)-mediated adhesion in polymorphonuclear neutrophils (PMN) (Jones, S. L., Wang, J., Turck, C. W., and Brown, E. J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9331-9336). However, the kinase that phosphorylates LPL Ser(5) has not been identified. We found that cAMP-dependent protein kinase (PKA), but not a variety of other serine kinases, can specifically phosphorylate LPL and LPL-derived peptides on Ser(5) in vitro. The cell-permeable cAMP analog 8-bromo-cAMP and the adenylate cyclase activator forskolin both induce LPL phosphorylation in cells. Two PKA inhibitors, H89 and KT5720, inhibited immune complex (IC)-stimulated LPL phosphorylation as well as IC-induced activation of alpha(M)beta(2)-mediated adhesion in PMN. The dose response of H89 inhibition of PMN adhesion correlated with its inhibition of LPL phosphorylation in response to IC. IC stimulation also transiently increased intracellular cAMP concentration in PMN. Thus, PKA functions in an integrin activation pathway initiated by IC binding to Fcgamma receptors in addition to its better known role as a negative regulator of cell activation by G protein-coupled receptors. In contrast, LPL Ser(5) phosphorylation and PMN adhesion induced by formylmethionyl-leucylphenylalanine or phorbol myristate acetate were not affected by PKA inhibitors, suggesting that a different kinase(s) is responsible for LPL phosphorylation in response to these agonists. Phosphoinositidyl 3-kinase also is required for FcgammaR but not formylmethionyl-leucylphenylalanine- or phorbol myristate acetate-induced LPL phosphorylation and activation of alpha(M)beta(2). Two phosphoinositidyl 3-kinase inhibitors blocked FcgammaR-induced cAMP accumulation, demonstrating that this kinase acts upstream of PKA. These data demonstrate a necessary role for PKA in IC-induced integrin activation and LPL phosphorylation.  相似文献   

14.
It is reported that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is activated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner and phosphorylates Akt, p70S6 kinase, and atypical protein kinase C (PKC), but its function on insulin signaling is still unclear. We cloned a full-length pdk-1 cDNA from a human brain cDNA library, and the adenovirus to overexpress wild type PDK-1 (PDK-1WT) or membrane-targeted PDK-1 (PDK-1CAAX) was constructed. Overexpressed PDK-1WT existed mainly at cytosol, and PDK-1CAAX was located at the plasma membrane. In 3T3-L1 adipocytes, insulin induced mobility shift of PDK-1 protein, but overexpressed PDK-1WT and CAAX were shifted at the basal state. Insulin stimulated tyrosine phosphorylation of PDK-1WT, but PDK-1CAAX was already tyrosine-phosphorylated at the basal state. Overexpression of PDK-1WT led to a full activation of PKC zeta/lambda without insulin stimulation but showed only the minimum effects to stimulate phosphorylation of Akt and GSK-3. In contrast, the overexpression of PDK-1CAAX caused phosphorylation of Akt and GSK-3 more strongly without insulin stimulation. However, PDK-1CAAX did not affect 2-deoxyglucose uptake and inhibited glycogen synthesis, surprisingly. Finally, PDK-1CAAX expression inhibited insulin-induced ERK1/2 phosphorylation in a dose-dependent manner. Taken together, the translocation of PDK-1 from cytosol to the plasma membrane is critical for Akt and GSK-3 activation. On the other hand, only atypical PKC and Akt activation was insufficient for stimulation of glucose transport, and constitutive activation of Akt-GSK-3 pathway may inhibit glycogen synthesis and MAPK cascade in 3T3-L1 adipocytes.  相似文献   

15.
General strategies to obtain inactive kinases have utilized mutation of key conserved residues in the kinase core, and the equivalent Lys72 in cAMP-dependent kinase has often been used to generate a "dead" kinase. Here, we have analyzed the consequences of this mutation on kinase structure and function. Mutation of Lys72 to histidine (K72H) generated an inactive enzyme, which was unphosphorylated. Treatment with an exogenous kinase (PDK-1) resulted in a mutant that was phosphorylated only at Thr197 and remained inactive but nevertheless capable of binding ATP. Ser338 in K72H cannot be autophosphorylated, nor can it be phosphorylated in an intermolecular process by active wild type C-subunit. The Lys72 mutant, once phosphorylated on Thr197, can bind with high affinity to the RIalpha subunits. Thus a dead kinase can still act as a scaffold for binding substrates and inhibitors; it is only phosphoryl transfer that is defective. Using a potent inhibitor of C-subunit activity, H-89, Escherichia coli-expressed C-subunit was also obtained in its unphosphorylated state. This protein is able to mature into its active form in the presence of PDK-1 and is able to undergo secondary autophosphorylation on Ser338. Unlike the H-89-treated wild type protein, the mutant protein (K72H) cannot undergo the subsequent cis autophosphorylation following phosphorylation at Thr197. Using these two substrates and mammalian-expressed PDK-1, we can elucidate a possible two-step process for the activation of the C-subunit: initial phosphorylation on the activation loop at Thr197 by PDK-1, or a PDK-1-like enzyme, followed by second cis autophosphorylation step at Ser338.  相似文献   

16.
Although palmitoylation of the beta(2)-adrenergic receptor (beta(2)AR), as well as its phosphorylation by the cyclic AMP-dependant protein kinase (PKA) and the beta-adrenergic receptor kinase (beta ARK), are known to play important roles in agonist-promoted desensitization, their relative contribution and mutual regulatory influences are still poorly understood. In this study, we investigated the role that the carboxyl tail PKA site (Ser(345,346)) of the beta(2)AR plays in its rapid agonist-promoted phosphorylation and desensitization. Mutation of this site (Ala(345,346)beta(2)AR) significantly reduced the rate and extent of the rapid desensitization promoted by sustained treatment with the agonist isoproterenol. The direct contribution of Ser(345,346) in desensitization was then studied by mutating all other putative PKA and beta ARK phosphorylation sites (Ala(261,262)beta ARK(-)beta(2)AR). We found this mutant receptor to be phosphorylated upon receptor activation but not following direct activation of PKA, suggesting a role in receptor-specific (homologous) but not heterologous phosphorylation. However, despite its phosphorylated state, Ala(261,262)beta ARK(-)beta(2)AR did not undergo rapid desensitization upon agonist treatment, indicating that phosphorylation of Ser(345,346) alone is not sufficient to promote desensitization. Taken with the observation that mutation of either Ser(345,346) or of the beta ARK phosphorylation sites prevented both the hyper-phosphorylation and constitutive desensitization of a palmitoylation-less mutant (Gly(341)beta(2)AR), our data suggest a concerted/synergistic action of the two kinases that depends on the palmitoylation state of the receptor. Consistent with this notion, in vitro phosphorylation of Gly(341)beta(2)AR by the catalytic subunit of PKA facilitated further phosphorylation of the receptor by purified beta ARK. Our study therefore allows us to propose a coordinated mechanism by which sequential depalmitoylation, and phosphorylation by PKA and beta ARK lead to the functional uncoupling and desensitization of the ss(2)AR.  相似文献   

17.
The mechanisms used by insulin to activate the multifunctional intracellular effectors, extracellular signal-regulated kinases 1 and 2 (ERK1/2), are only partly understood and appear to vary in different cell types. Presently, in rat adipocytes, we found that insulin-induced activation of ERK was blocked (a) by chemical inhibitors of both phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC)-zeta, and, moreover, (b) by transient expression of both dominant-negative Deltap85 PI3K subunit and kinase-inactive PKC-zeta. Further, insulin effects on ERK were inhibited by kinase-inactive 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and by mutation of Thr-410 in the activation loop of PKC-zeta, which is the target of PDK-1 and is essential for PI3K/PDK-1-dependent activation of PKC-zeta. In addition to requirements for PI3K, PDK-1, and PKC-zeta, we found that a tyrosine kinase (presumably the insulin receptor), the SH2 domain of GRB2, SOS, RAS, RAF, and MEK1 were required for insulin effects on ERK in the rat adipocyte. Our findings therefore suggested that PDK-1 and PKC-zeta serve as a downstream effectors of PI3K, and act in conjunction with GRB2, SOS, RAS, and RAF, to activate MEK and ERK during insulin action in rat adipocytes.  相似文献   

18.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis.  相似文献   

19.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   

20.
A D Kohn  K S Kovacina    R A Roth 《The EMBO journal》1995,14(17):4288-4295
In the present study, insulin is shown to rapidly stimulate by 8- to 12-fold the enzymatic activity of RAC-PK alpha, a pleckstrin homology domain containing ser/thr kinase. In contrast, activation of protein kinase C by phorbol esters had almost no effect on the enzymatic activity of RAC-PK alpha. Insulin activation was accompanied by a shift in molecular weight of the RAC-PK alpha protein, and the activated kinase was deactivated by treatment with a phosphatase, indicating that insulin activated the enzyme by stimulating its phosphorylation. This insulin-induced shift in RAC-PK was also observed in primary rat epididymal adipocytes, as well as in a muscle cell line called C2C12 cells. The insulin-stimulated increase in RAC-PK alpha activity was inhibited by wortmannin (an inhibitor of phosphatidylinositol 3-kinase) in a dose-dependent manner with a half-maximal inhibition of 10 nM, but not by 20 ng/ml of rapamycin. Activation of RAC-PK alpha activity was also observed in a variant RAC lacking the pleckstrin homology domain. These results indicate that RAC-PK alpha activity can be regulated by the insulin receptor. RAC-PK alpha may therefore play a general role in intracellular signaling mediated by receptor tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号