首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the soil), the water content of the soil was higher for the female plants had than for the male plants. Conclusions Sex-differential timing of investment in reproduction and differential availability and use of resources from the soil (particularly water) are factors that probably offset the costs of reproduction in the above-ground growth in males and females of H. peploides. The results suggest that the patterns of spatial segregation of the sexes observed in H. peploides may contribute to maximize each sex's growth and reproduction.  相似文献   

2.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

3.
Abstract. Poa ligularis is a dioecious species and a valuable forage plant which is widespread in the arid steppe of northern Patagonia (Argentina). The vegetation in these areas consists of a system of perennial plant patches alternating with bare soil areas defining contrasting micro‐environments. We hypothesized that (1) male and female individuals of P. ligularis are spatially segregated in different micro‐environments, (2) the intensity of spatial segregation of sexes depends on plant structure and (3) spatial segregation of sexes is enhanced by competitive interactions between the sexes within the vegetation patches. We analysed the spatial distribution of female and male individuals in relation to the spatial pattern of vegetation in two areas differing in their vegetation structure. The location of P. ligularis within patches where either male, female or both sexes occurred was also analysed. The results indicate that different patterns of spatial distribution of sexes of P. ligularis may be found at the community level depending on the dominant life forms and geometric structure of plant patches. Where patches are of a lower height, with a high internal patch cover, individuals of both sexes are concentrated within patch canopies. In sites characterized by large, tall patches and less internal patch cover suitable microsites for female and male P. ligularis occur both within and outside the patch with males located at further distances from the patch edge. Where the patch is large and tall enough to allow the establishment of males and females at relatively high numbers, males occupy the patch periphery or even colonize the interpatch bare soil. These spatial patterns are consistent with selective traits in which females better tolerate intraspecific competition than males, while males tolerate wider fluctuations in the physical environment (soil moisture, nitrogen availability, wind intensity, etc.).  相似文献   

4.
In dioecious plant species, males and females are thought to have dissimilar allocation patterns. Females are believed to invest more in reproduction and less in growth and maintenance than males. This differential investment between sexes could result in distinct growth patterns and contrasting survival rates, thereby affecting the sex ratio of a population and the age and size distribution of males and females, possibly leading to habitat segregation according to sex. These effects might become more apparent under particularly limiting conditions, such as in nutrient-deficient soils or in climatically stressed environments. To verify these predictions, growth patterns, microsite characteristics, and age and size distribution of male and female individuals were compared, and population sex ratio was determined in three populations of the dioecious shrub Juniperus communis var. depressa (Cupressaceae, Pinophyta) along a short latitudinal gradient on the eastern coast of Hudson Bay (Northern Québec, Canada). We found that the northernmost population had a male-biased sex ratio, but that the southernmost one had a higher proportion of females. Our results failed to reveal any significant differences in radial growth patterns, mean sensitivity, annual elongation of the main axis, and size and age frequency distribution between males and females in any population. Furthermore, there was no evidence of microhabitat segregation according to sex as indicated by the lack of differences in the physicochemical characteristics of the substrate under males and females. Clearly, the expected ecological consequences of a presumed greater investment of females in reproduction were not apparent even under the very stressful conditions prevailing on subarctic dunes. Many factors could reduce differences in the cost of reproduction between males and females, such as the number and quality of reproductive structures produced annually by individuals of each sex, the possible photosynthetic activity of the immature female cones, and the complexity of the source/sink relationship within individuals. Alternatively, there may be no differences between sexes in their reproductive investment.  相似文献   

5.
Sex-specific interactions with herbivores and pollinators have been observed in female and male plants of dioecious species. However, only a limited number of studies have revised sex-specific patterns in mycorrhizal symbiosis. To test whether female and male plants of Antennaria dioica differ in their relationship with arbuscular mycorrhizal (AM) fungi, we examined the temporal and spatial variation in AM fungi in female, male and non-reproductive A. dioica plants in three natural populations in Finland during flowering and after seed production. Our results are consistent with previous studies both under greenhouse and field conditions with the same species showing differences in AM colonization between the sexes linked with allocation to reproduction. Taken together, the results indicate that there is a sex-specific interaction between A. dioica and AM fungi. Overall, females have a greater investment in AM fungi, likely to enhance their uptake of soil nutrients and support the reproduction by seed.  相似文献   

6.
The hypothesis that reproductive cost differs between sexes was tested in Juniperus communis subsp. alpina along an altitudinal gradient. Sex ratio (male : female) increased significantly with elevation, and above 2,600 m it was significantly male-biased. The reproductive effort was markedly greater for females than for males at all elevations. However, over 3 years of study, the growth of the females, measured as elongation of the main axes, was similar to that of the males. In both sexes, growth decreased with increasing elevation. Neither size of the ripe seed cones, nor the number of developed seeds per cone varied with elevation. The percentage of filled seeds was significantly greater at higher elevations indicating more favourable conditions for wind pollination in these stands. However, cone production decreased with elevation and so, reproductive success of J. communis subsp. alpina in Sierra Nevada decreases towards both upper and lower altitudinal distribution limits. The results do not support the hypothesis of differential reproductive cost between sexes; thus, alternative arguments to explain the altitudinal variation of sex ratio are discussed.  相似文献   

7.
应用地统计学的方法,研究了祁连山北坡石羊河上游,6—10月之间红腹牧草蝗Omocestus haemorrhoidalis(Charpentie)雌雄虫的空间分布格局、动态变化及空间相关性。结果表明:红腹牧草蝗雌雄虫的半变异函数为球状模型与高斯模型,二者空间分布类型相同,均呈聚集分布;随时间的变化均呈现"扩散-聚集-扩散-聚集"的动态特征,7—8月之间雌虫的变化强度明显强于雄虫;二者的模糊贴近度指数在0.53~0.71之间,且指数随红腹牧草蝗的生长呈逐渐增加到减少的变化特征,表明雌雄虫在数量与空间上有较强的跟随关系,且跟随关系随红腹牧草蝗的生长发生明显的阶段性变化。  相似文献   

8.
Several ecological conditions and processes occurring naturally in plant populations may lead to spatial aggregation of sexes within populations of sexually polymorphic species. In addition, ecological disturbances such as forest management or fire could also affect the spatial distribution of sexes within populations. Spatial aggregation of sexes can have important consequences for the fitness of the individuals in sex-biased patches through increased pollen limitation and/or variation in the male fitness of hermaphrodites. Therefore, spatial aggregation of sexes could be relevant for the maintenance of the sexual polymorphism in plant species. Here, we used point pattern analysis to study the spatial distribution of female and hermaphrodite individuals within a single population of the gynodioecious understory shrub Daphne laureola, inhabiting a young pine reforestation and the adjacent natural undisturbed area. In the undisturbed area, we found that hermaphrodites were distributed randomly whereas females were spatially aggregated at short distances. Such aggregation could result from narrower ecological amplitude, cyto-nuclear determination of sex and limited dispersal and/or increased cloning in females. In the reforested area, females were slightly more abundant and the two sexes were randomly distributed among all plants. Recolonization processes after certain forest disturbances could thus favour the establishment of females and alter the spatial distribution of sexes in this understory species.  相似文献   

9.
Eppley SM 《Oecologia》2006,146(4):549-554
If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes—which occur as early as the seedling stage—can generate sex ratio variation.  相似文献   

10.
Summary Desert populations of the evergreen dioecious shrub Simmondsia chinensis exhibit sex-related leaf and canopy dimorphisms not present in populations from more mesic coastal environments. Leaves on female shrubs have characteristically larger sizes, greater specific weights, and greater water-holding capacity than male leaves in desert habitats. In coastal scrub environments no significant difference is present, with leaf characteristics of both sexes similar to those of desert male shrubs. Desert female shrub canopies are typically relatively open with little mutual branch shading. In male shrubs canopies are more densely branched with considerable mutual shading of branches. Female plants allocate a greater proportion of their vegetative resources to leaves than do male plants. Considering total biomass, male plants allocate 10–15% of their resources (biomass, calories, glucose-equivalents, nitrogen, phosphorus) to reproductive tissues. Female allocation is dependent on seed set. At 100% seed set females would allocate 30–40% of their resources to reproduction, while female reproductive investment would equal that of males at approximately 30% seed set. Sexual dimorphism and the associated physiological characteristics in Simmondsia act as an alternative to differential habitat selection by male and female plants. Female plants respond to limited water resources in desert areas by increasing their efficiency in allocating limited resources to reproductive structures.  相似文献   

11.
Hesse E  Pannell JR 《Annals of botany》2011,107(6):1039-1045

Background and Aims

Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua.

Methods

The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared.

Key Results

Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes.

Conclusions

Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.  相似文献   

12.
Organisms reproducing by cyclical parthenogenesis combine the benefits of both sexual and asexual reproduction within the same life cycle. Few studies have examined the evolution of variation in the pattern of investment in parthenogenetic compared to sexual reproduction. Seven clones of Daphnia pulex (Crustacea: Cladocera) varying in allocation to sexual reproduction, as measured by the production of males, were raised in isolation and together in a microcosm to study the pattern of sexual reproduction and the effect of this variation on clone fitness. Sex allocation for clones raised together a microcosm was similar to their allocation when raised in isolation, suggesting a genetic basis to the variation. Three clones showed a cost of producing males that lead to their extinction after about 30 days due to the lack of females required for the clones to persist by parthenogenetic reproduction. The remaining four clones persisted until the end of the 72-day experiment. Clones with little or no allocation to males showed no increased allocation to sexual females. The seven clones showed a greater variation in estimated fitness through male and female function than in total estimated fitness. The clone with the greatest total fitness gained most of its fitness through male function but also had a relatively high fitness through female function. Although one clone produced only females it had the next highest fitness. The three clones that went extinct because of a high investment in males had estimated fitness as high as some clones that persisted in the microcosm because of a higher investment in parthenogenetic reproduction. The similarity in total fitness among clones suggests that Daphnia pulex populations in temporary habitats maintain a sex polymorphism where different genotypes vary-in functional gender ranging from female to primarily male.  相似文献   

13.
Some benefits and costs of resident males to females are examined in white-faced capuchins (Cebus capucinus) at Santa Rosa National Park, Costa Rica. A total of 380 hours of focal data were collected on adults in two groups, between January and July 1991. The results of this study suggest that for females, males provide some greater benefits, and impose some higher costs than do other females. Males are more vigilant than females, and are somewhat more successful in detecting predators. To the extent that predator protection is a major benefit of group living, this benefit seems to derive more from males than from females. Increased contest competition is the major cost of group living, and the study suggests that females bear a higher proportion of this cost than males. More foraging related agonism occurs between males and females than between females, more aggression occurs between than within sexes, and female foraging success is negatively associated with agonistic interactions involving males. However, female foraging success is negatively affected by the proximity of other females, and not by the proximity of males. Differences in the distribution of male benefits and costs according to female dominance rank are suggested. © Wiley-Liss, Inc.  相似文献   

14.
Salicaceae plants are dioecious woody plants. Previous studies have shown that male individuals are more tolerant to water deficiency than females for male‐biased poplars. However, Salix paraplesia is a female‐biased species in nature. It is still unknown whether female willows are more tolerant to drought stress than males. To better understand the sexually different tolerance to water deficiency in willows, a greenhouse experiment combined with a field investigation was conducted, and physiological traits were tested in male and female S. paraplesia under a drought‐stressed condition (50% of soil water capacity). Our field investigation showed that S. paraplesia was a species with female‐biased sex ratio along altitude gradients (2,400 m, 2,600 m and 2,800 m) in their natural habitats. Our results showed that the height growth, biomass accumulation, total chlorophyll pigment content (TChl), and the net photosynthetic rate were higher in female willows than in males at the low and middle altitudes (2,400 m and 2,600 m) rather than at a high altitude (2,800 m) under well‐watered conditions. Under drought‐stressed conditions, the growth, biomass, and photosynthesis were greatly inhibited in both sexes, while females showed higher biomass and TChl content and suffered less negative effects than did males. Particularly, females that originated from a high altitude showed lower leaf relative electrolyte leakage, malondialdehyde content, and less disorder of chloroplast ultrastructures but a higher peroxidase activity (POD) than that of males. Therefore, S. paraplesia females exhibited a better drought tolerance and self‐protective ability than males from high altitude. There is a reason to speculate that the population structure of S. paraplesia at a high altitude would be likely to further female biases with the increased drought intensity in the alpine regions.  相似文献   

15.
Heike Pröhl  Olaf Berke 《Oecologia》2001,129(4):534-542
In many species with a resource-based mating system, males defend resources to increase their attractiveness to females. In the strawberry poison frog, Dendrobates pumilio, suitable tadpole-rearing sites appear to be a limited resource for females. Territorial males have been suggested to defend tadpole-rearing sites to increase their access to females. In this study we investigate the spatial association between tadpole-rearing sites and the sexes as well as the spatial association of males and females. If strawberry poison frogs have resource defense polygyny, we expect males and females to be associated with tadpole-rearing sites and that females will deposit their offspring in tadpole-rearing sites inside the territories of their mates. To test this hypothesis, home range and core area sizes were calculated for both sexes and the association patterns were compared in two areas that differed in their abundance of tadpole-rearing sites. Home ranges and core areas of females were much larger than male home ranges. Females showed a clumped distribution in the vicinity of tadpole-rearing sites. Males were not clumped and were less associated with tadpole-rearing sites. Females generally did not use tadpole-rearing sites in the territory of their mates and we therefore conclude that males did not defend tadpole-rearing sites for females. Our data are consistent with the general assumption that female distribution is influenced by resource distribution and that male distribution depends on female distribution. Nevertheless, the distribution of D. pumilio females was also influenced by male spacing patterns. Males probably initially establish their core areas where female density is high and then females move among territories to sample males. Males compete vigorously for places with high female density, the defense of which is likely important for enhancing their mating success. In general, the spacing patterns did not differ between populations but the sex ratio was strongly female biased in the habitat with more tadpole-rearing sites, reflecting the direct reliance of females on these resources.  相似文献   

16.
Many dioecious plant species show spatial segregation of the sexes along a gradient of habitat quality. This study explores the spatial distribution and size of male and female Nyssa aquatica (water tupelo) trees along a water depth gradient. Individuals were mapped to determine the spatial distribution of male and female trees and the relationship between distribution of males and females and water depth. Nearest neighbor analysis indicated that males and females were randomly distributed in space. Comparisons among plots, however, indicated that there were more male trees in the shallowest plot. Height and diameter at breast height were measured for each tree. Males were significantly larger in height and basal area than females. Coring of male and female trees indicated that size differences between the sexes cannot be attributed to age differences, suggesting that male water tupelo trees allocate more resources to growth than do female trees.  相似文献   

17.
The importance of ecological factors such as sex lability, spatial segregation, and resource allocation in the evolution of dioecy were examined in Schiedea globosa. S. globosa is a subdioecious species with equal numbers of plants possessing strictly male or female function and a small proportion of hermaphrodites. The propensity for labile sex expression was under both environmental and genetic control; some plants with male function became hermaphroditic (by producing female flowers) under better growing conditions in the field and in the greenhouse. There was some spatial segregation of the sexes. Because of sex lability, more hermaphrodites than males occurred on moister slopes. Although there were not measurable sex-related differences in mortality within or between two flowering seasons, more females than males and hermaphrodites occurred at the bottom of slopes. Males and females produced the same number of ramets and inflorescences, but females had a greater number of flowers per inflorescence. Males and females had the same number of ovules (vestigial in males), but females had larger ovules and longer stigmas. Hermaphrodites and males had the same amount of pollen per flower despite the production of fruit by the hermaphrodites. In hermaphrodites, there was no apparent tradeoff within flowers between pollen production and ovule production. These results indicate that spatial segregation, sex lability, and environmental conditions influence allocation patterns of S. globosa, and in combination with high inbreeding depression and selling rates, may promote the further evolution of dioecy in S. globosa.  相似文献   

18.
The larval females of Coccophagus sp. nr gurneyi Compere are primary parasitoids of lantana mealybugs, whereas males develop hyperparasitically through other parasitoids (never their own females), so the species is alloparasitic. Males are seldom even reared from lantana mealybugs (<0.3%, n = 4,212), and have not yet been reared from any other host. Adults were sampled in the field to establish that this species is sexual (by assessing female spermathecal content), and to quantify relative abundance of the sexes around host infestations. Adult males were scarce above hosts (3%, n = 314), but were attracted in relatively high numbers to caged virgin females within those infestations. Caged females outside infestations did not attract males, suggesting that mate attraction requires environmental signals other than those from females. Most females collected in the field above host infestations had sperm in their spermathecal capsules. They presumably had mated with males that developed elsewhere (so mate localization might involve searching across substantial distances). Virgin females were present only early in the day and evidently mate soon after eclosion. Evidence of sperm depletion in mated females was not found. The spatial scale of male and female movements needs to be quantified, but the ongoing movement of individuals (as a consequence of their sex‐related host relationships) seems to be a regular aspect of their ecology. The spatial and temporal dynamics across the sexes illustrates that their abilities to localize one another for mating leaves the sexes free to diverge ecologically, and their sex ratios to vary.  相似文献   

19.
Silver phase American eels, Anguilla rostrata , were collected while migrating from five rivers in Maine, U.S.A. Sex ratios varied from 49 to 98% male for these rivers and had a range of 46% over a 30 km distance between the mouths of three rivers. The proportion of male eels was inversely related to the amount of lacustrine habitat in the five drainage areas ( r =−0·95, P =0·014). A combination of these sex ratios and published data from two Nova Scotia rivers showed large variation in the proportion of male eels within 1° of latitude. Thus, the hypothesis from the literature that the distribution of the sexes is dependent upon distance of larval transport was not supported. Eels migrating from lacustrine habitats within a river were predominately female, while eels migrating from fluvial habitats were predominately male, regardless of upstream distance. Apparently river habitat influences the distribution of the sexes and may play a role in sex determination.  相似文献   

20.
Mixed populations of the twospotted spider mite (TSM),Tetranychus urticae (Koch), and the Banks grass mite (BGM),Oligonychus pratensis (Banks), occur on corn and sorghum plants in late summer in the Great Plains. Interspecific matings between these arrhenotokous species occur readily in the laboratory but yield no female offspring. The effect of interspecific mating on female: male sex ratios was measured by examining the F1 progeny of females that mated with both heterospecific and conspecific males in no-choice situations. TSM females that mated first with BGM males and then with TSM males produced a smaller percentage of female offspring than TSM females that mated only with TSM males (43.1±5.8 and 78.9±2.8% females, respectively). Similarly, BGM females mated with heterospecific males and then with conspecific males produced fewer female offspring than females mated only with BGM males (55.7±5.2 and 77.5±2.5%, respectively). Lower female: male sex ratios were produced also by BGM females that mated with TSM males after first mating with conspecifics (62.4±3.4%). In mixed populations containing males of both species, females also produced lower female: male sex ratios, but these ratios were not as low as expected based on mating propensities and progeny sex ratios observed in no-choice tests. These data suggest that interspecific mating may substantially reduce female fitness in both mite species by reducing the output of female offspring, but in mixed populations this effect is mitigated by unidentified behavioral mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号