首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Theory predicts that cold environments will select for strategies that enhance the growth of ectotherms, such as early emergence from nests and more efficient use of resources. We used a common garden experiment to detect parallel clines in rates of embryonic growth and development by eastern fence lizards (Sceloporus undulatus). Using realistic thermal conditions, we measured growth efficiencies and incubation periods of lizards from five populations representing two distinct clades. In both clades, embryos from cold environments (Indiana, New Jersey, and Virginia) grew more efficiently and hatched earlier than embryos from warm environments (Florida and South Carolina). Because eggs from cold environments were larger than eggs from warm environments, we experimentally miniaturized eggs from one population (Virginia) to determine whether rapid growth and development were caused by a greater maternal investment. Embryos in miniaturized eggs grew as efficiently and incubated for the same duration as embryos in unmanipulated eggs. Taken together, our results suggest countergradient variation has evolved at least twice in S. undulatus.  相似文献   

2.
Metabolic rates of lizards, Sceloporus undulatus, differed between acclimated and acclimatized individuals. Oxygen consumption of field acclimatized Sceloporus undulatus peaked during the early morning and afternoon and was highest overall during spring. Oxygen consumption in the summer was similar to that in the fall. Laboratory acclimated animals collected during spring exhibited significantly lower rates of oxygen consumption than acclimatized individuals. Rates were similar in summer. Oxygen consumption did not vary between spring and summer for acclimated animals. Activity season maintenance costs of adult males based on field body temperatures and seasonal measurements of metabolic rates of acclimatized lizards (23.8 kJ/g) were higher than maintenance costs computed with data for summer lizards (20.6 kJ/g; a difference of 13.4%) and acclimated lizards (15.6 kJ/g; a difference of 34.5%).  相似文献   

3.
Variation in thermal constraints on activity has been hypothesized to be an important ecological source of geographic variation in growth rates of juvenile eastern fence lizards Sceloporus undulatus. However, most of the evidence to support this hypothesis is either inferential or indirect. In this study, I quantitatively compared thermal constraints on activity and their relationship to growth rates of free-ranging juvenile fence lizards from two extremes of the range of variation in growth rate (Nebraska and New Jersey) used in a reciprocal transplant experiment. I also examined energy allocation made to growth and storage by yearling lizards. Reduced growth rates in New Jersey of normally fast-growing hatchlings from Nebraska were associated with a more stringent thermal constraint on activity corresponding to a 2-3-h shorter predicted daily activity period in New Jersey compared to Nebraska. The thermal constraint on activity was particularly strong (24% less time available in New Jersey compared to Nebraska) during the period when hatchling lizards emerge (August-October). An 8% reduction in total activity time available over the course of a single year was associated with a 7% reduction in the total amount of energy accumulated by lizards in New Jersey. Differences in the total amount of energy available for allocation were also accompanied by differences in how energy was allocated. Lizards from New Jersey had an allocatable energy pool of approximately 40.34 kJ (88% to growth, 12% to storage, and 0% to reproduction). Lizards from Nebraska had an allocatable pool of 43.44 kJ (22% to growth, 18% to storage, and 60% to reproduction). This study joins others in advocating and illustrating an integrative approach to determining the causes and consequences of life-history variation by combining experimental, comparative, and phylogenetic methods in a single system.  相似文献   

4.
Many species of fishes along the east coast of the United States have complex life histories, especially those that move over hundreds of kilometers across ocean and estuarine habitats. To further unravel the life history of one of these, the speckled worm eel, Myrophis punctatus we examined samples from extensive time series and discrete samples collected in the ocean and estuaries between Florida and Massachusetts. We now surmise spawning occurs between fall and early winter in the ocean south of Cape Hatteras, North Carolina and in the vicinity of the Bahamas. The pelagic leptocephalus larvae (10?C80 mm Total Length [TL]) are transported north in the Gulf Stream and across the continental shelf to arrive at estuarine inlets at ages of 53 ?C 110 days. Their estuarine immigration and abundance varies along the east coast, with higher levels occurring at inlets in South Carolina (North Inlet), and North Carolina (Beaufort Inlet), during the winter and early spring. Much lower abundances occur in New Jersey (Little Egg Inlet) in winter and spring and again in the summer. These ingressing individuals were euryodontic leptocephali and metamorphic stages and were shrinking to lengths of 76?C52 mm TL as these stages progressed. Metamorphic individuals and glass eels subsequently settle and burrow in estuarine sediments, as do all subsequent stages, and thereby become relatively unavailable to many sampling gears. In estuaries they attained sizes up to 440 mm TL. Later, they presumably enter the ocean to spawn because that is where the smallest larvae are found.  相似文献   

5.
Abstract Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.  相似文献   

6.
The resting metabolic rates (RMR) of 6 men was determined monthly for 12 consecutive months, at Rothera Base, Antarctica (67 degrees 34'S, 68 degrees 07'W). Body weight and body composition were also recorded. Metabolic rates were within the range of those found in past polar studies, and of young men in the UK, but varied considerably from month to month. The RMR had a mean range of 30% (p less than 0.01), with individual ranges of up to 38%. Mean RMR was high in spring, summer and autumn, and low in winter. While these patterns appeared to be associated with a well defined annual cycle of activity, variations could not be correlated with periods of intense activity, individually or for the group.  相似文献   

7.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

8.
We measured microclimate, field metabolic rates (FMRs), water flux, and activity patterns of telemetered box turtles (Terrapene carolina) in South Carolina from September 1987 to October 1988. Turtles were inactive for most of the winter and were active only sporadically during the rest of the year. Using the doubly labeled water method, we found that water flux averaged 8.8, 18.9, and 26.4 mL kg(-1) d(-1) in winter, spring, and summer/fall, respectively. FMR for the same periods averaged 0.028, 0.065, and 0.124 mL CO(2) g(-1) h(-1). Differences in FMR among seasons were significant but not between sexes. Using operative temperatures, we predicted standard and maximum metabolic rates of turtles. In winter, FMR was elevated above standard metabolic rates and close to maximum metabolic rates, whereas in spring and summer/fall, FMR fell midway between standard and maximum metabolic rates. We used a model to predict metabolic rates, geographical distribution, and potential reproductive output of box turtles across latitudes in eastern North America. Low FMR and low annual reproductive output may allow box turtles to survive and flourish in unpredictable resource environments by minimizing costs and risks, thereby maintaining greater lifetime reproductive success.  相似文献   

9.
In North Carolina, Tomato spotted wilt tospovirus (family Bunyaviridae, genus Tospovirus, TSWV) is vectored primarily by the tobacco thrips, Frankliniella fusca (Hinds), and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). TSWV overwinters in winter annual weeds from which it is spread to susceptible crops in spring. Because most susceptible crops are destroyed after harvest before winter weeds emerge in the fall, infected summer weeds are thought to be the principal source for spread of TSWV to winter annual weeds in fall. A survey of summer weeds associated with TSWV-susceptible crops in the coastal plain of North Carolina conducted between May and October revealed that relatively few species were commonly infected with TSWV and supported populations of F. fusca or F. occidentalis. F. occidentalis made up > 75% of vector species collected from 15 summer weed species during 2002. The number of F. occidentalis and F. fusca immatures collected from plant samples varied significantly among plant species. Ipomoea purpurea (L.) Roth, Mollugo verticillata L., Cassia obtusifolia L., and Amaranthus palmeri S. Wats supported the largest numbers of immature F. occidentalis. Richardia scabra L., M. verticillata, and Ipomoea hederacea (L.) supported the largest numbers of F. fusca immatures. TSWV was present at 16 of 17 locations, and naturally occurring infections were found in 14 of 29 weed species tested. Five of the TSWV-infected species have not previously been reported as hosts of TSWV (A. palmeri, Solidago altissima L., Ipomoea lacunosa L., I. purpurea, and Phytolacca americana L.). Estimated rates of infection were highest in I. purpurea (6.8%), M. verticillata (5.3%), and I. hederacea (1.9%). When both the incidence of infection by TSWV and the populations of F. occidentalis and F. fusca associated with each weed species are considered, the following summer weed species have the potential to act as significant sources for spread of TSWV to winter annual weeds in fall: I. purpurea, I. hederacea, M. verticillata, A. palmeri, C. obtusifolia, R. scabra, Ambrosia artemisiifolia L., Polygonum pensylvanicum L., and Chenopodium album L.  相似文献   

10.
P. Licht    H. E. Hoyer    P. G. W. J. van  Oordt 《Journal of Zoology》1969,157(4):469-501
Annual testicular cycles in the lizards Lacerta sicula and L. muralis appear to be regulated by the interaction between seasonal changes in body temperature and an endogenous rhythmicity in thermal responsiveness. Photoperiodism does not appear to be an important factor; i.e. testicular activity does not appear to be regulated by daylength.
Following testicular regression in July, the lizards are refractory to sexual stimulation by high temperatures (i.e. normal preferred levels) for about five months. High temperatures accelerate gonadal regression and prevent recrudescence during late summer. Reduced temperatures stimulate testicular enlargement and spermatid formation during the autumn; this recrudescence can be blocked by treatment with testosterone. Very low temperatures suppress gonadal activity during mid-winter.
Maintenance of lizards at constant high temperatures (33°C) starting in July suppresses testicular recrudescence until December. Also, testicular collapse occurs in lizards transferred to high temperatures after recrudescence has started. The gonads are stimulated by exogenous gonadotropins at 33°C during the fall indicating that high temperatures reduce circulating levels of gonadotropins.
The refractoriness to high temperatures is "spontaneously" terminated during midwinter (December) under a wide range of photo-thermal conditions. Low temperatures may accelerate the termination of refractoriness. Thereafter, high temperatures stimulate, and are required for the final development of the testes and accessory sexual structures. Thus, the increase in body temperature following hibernation times the onset of breeding in the spring.
Temperature also has a marked influence on appetite and growth, independent of photo-period. Weight gains are greater at 33° than at 20°C. At 33° there is a tendency for abdominal fat bodies to enlarge but with little hepatic growth; whereas, the reverse occurs at 20°C.  相似文献   

11.
By timing reproduction to occur when predatory mortality on progeny is minimal, organisms may maximize recruitment to adult populations. Accordingly, an hypothesis to explain the greater importance of fall than spring spawning to North Carolina populations of bay scallops (Argopecten irradians) is that predatory mortality of bay scallop recruits is lower in fall and winter than spring and summer. To test this hypothesis, we measured predatory mortality of scallop recruits monthly. To infer the identities of predators that are most important in determining patterns of mortality of bay scallop recruits in spring and in fall, predatory mortality of bay scallop recruits was compared between the edge and interior of sheltered and exposed seagrass patches during the day and at night in May and November. Consideration of predatory mortality throughout the year indicated that mortality of scallop recruits over late spring and summer approaches 100% but is negligible over late fall and winter. In May, predatory mortality of scallop recruits was similar during day and night but greater at exposed than sheltered sites. In November, predatory mortality was greater during night than day and slightly greater at sheltered than exposed sites. In neither month did position within patch influence mortality, and at all times and places, missing and crushed scallops contributed a higher proportion than drilled scallops to the total dead. These spatio-temporal patterns of mortality of scallop recruits suggest that mud crabs, Dyspanopeus sayi, which are more abundant in exposed than sheltered seagrass beds during spring and can feed by day and night, are a likely major contributor to spatio-temporal pattern in mortality of scallop recruits in North Carolina. Blue crabs, Callinectes sapidus, which are many times more abundant in summer than winter, may also contribute to observed seasonal patterns in mortality. The dramatically lower rates of predation on bay scallops over the winter months appear to provide fall settlers with a temporal window of opportunity to recruit to the adult population. Although spring spawning contributes little to adult populations in most years because of high rates of predatory mortality during summer, we hypothesize that spring spawning persists because infrequent devastating perturbations, such as hurricanes and red tides, can result in complete failure of fall recruitment.  相似文献   

12.
达乌尔黄鼠产热的季节性变化   总被引:4,自引:2,他引:4  
达乌尔黄鼠(Citellusdauricus)的产热表现出明显的季节性变化。在非冬眠期,静止代谢率(RMR)和非颤抖性产热(NST)于春季最高,秋季次之,夏季最低。冬眠期,RMR降到极低水平,只为春季的3.0%。肝脏的线粒体蛋白含量、线粒体呼吸和细胞色素C氧化酶活力在秋季显著高于其它各季。褐色脂肪组织(BAT)的重量、线粒体蛋白含量、细胞色素C氧化酶活力和α-磷酸甘油氧化酶活力,在夏季处于一年中的最低水平,到了冬季这些指标达到一年中的最高水平。在非冬眠季节BAT产热能力升高时,NST能力也相应升高,这表明BAT产热能力的增强是NST能力提高的部分机制。达乌尔黄鼠血清T_4含量在年周期中没有明显改变,冬眠时血清T_3含量显著高于其它各季。  相似文献   

13.
Caloglossa intermedia , sp. nov. is described from estuaries and salt marshes of Atlantic North America. This species is related to C. leprieurii (Montagne) G. Martens based on the position of rhizoids, whereas it is more similar to C. monosticha Kamiya in the number of cell rows at the nodes. Rhizoidal development of this alga also shows an intermediate characteristic between C. leprieurii and C. monosticha. Crosses were successful between the strains of C. intermedia from Georgia and South Carolina, but neither strain was interfertile with morphologically related species. C. intermedia from Georgia, New Jersey, and South Carolina had identical DNA sequences in the Rubisco spacer and flanking regions of rbc L and rbc S. This alga was more closely related to C. leprieurii in a molecular phylogenetic analysis. The evolution of each morphological character is discussed.  相似文献   

14.
1. Thyroid activity was examined in the lizard, Trachydosaurus rugosus, the tortoise Chelodina longicollis and the crocodile, Crocodylus johnstoni, acclimated to 20-22 degrees C and 30-32 degrees C. Thyroidal uptake and release of 125I, plasma concentrations of T3 and T4 were measured as was resting oxygen consumption (at 30 degrees C) before and after both thyroidectomy and thyroxine injections. 2. All three species showed 125I uptake at both temperatures and showed no thyroidal release of 125I at 20-22 degrees C but exhibited thyroidal release of 125I (and presumably hormone secretion) at 30-32 degrees C. 3. Plasma concentrations of thyroxine ranged from 0.55 nM to 3.24 nM and triiodothyronine from 0.14 nM to 0.51 nM. 4. Neither thyroidectomy nor thyroxine injections had any effect on metabolic rate in 20-22 degrees C acclimated lizards. Thyroidectomy resulted in a significant decrease in metabolic rate in 30-32 degrees C acclimated lizards and tortoises and thyroxine injections resulted in significant increases in metabolism in 30-32 degrees C acclimated lizards, tortoises and crocodiles. 5. A comparison of thyroid parameters in reptiles and mammals concluded that although the reptilian thyroid is active at high temperatures it is still considerably less active than it is in mammals.  相似文献   

15.
K. Christian    B. Green    G. Bedford    K. Newgrain 《Journal of Zoology》1996,240(2):383-396
The field metabolic rates (FMR) and water fluxes of Varanus scalaris were measured during the wet and dry seasons by the doubly-labelled water technique. Seasonal measurements of standard (night-time) metabolism (SMR) and resting (daytime) metabolism (RMR) were made in the laboratory at 18, 24, 30 and 36°C, and maximal oxygen consumption was measured at 36°C on a motorized treadmill. This population was active throughout the year. In the wet season, the mean FMR was 7.8 kJ day−1 (128.0 kJkg−1 day−1; mean mass = 66.4 g, n = 13), and during the dry season the mean was 5.0 kJ day−1 (67.6 kJ kg−1 day−1; mean mass = 77.4 g, n = 17). The mean water flux rates for these animals were 3.6 and 1.2 ml day−1, respectively (60.4 and 16.6 ml kg−1 day−1). The seasonal means of FMR and water flux were significantly different by ANCOVA ( P < 0.0001). Measurements of SMR and RMR were significantly higher in the wet season (ANCOVA: P < 0.0001), but we found no difference in the maximal oxygen consumption between seasons (ANCOVA: P = 0.6). The maximal oxygen consumption of the lizards on the treadmill (2.9 ml min−1= 1.8 ml g−1 h−1), mean mass = 97.4 g, n = 16) was 20 times that of the SMR at the same temperature during the dry season, and 11 times that of the SMR during the wet season. The seasonal differences in FMR were attributable to: changes in SMR (12.2%) and RMR (16.4%); differences in night-time body temperatures (11.3) and daytime body temperatures (16.4%); and activity (broadly defined to include locomotion, digestion, and reproductive costs (43.7%).  相似文献   

16.
In lizards, one of the most important behavioral mechanisms to cope with spatial and temporal variations in thermal resources observed is activity time. The longer a lizard can maintain activity, the more time it has to forage and reach larger adult body size. We studied the behavioral adjustments to different climatic regimens on daily and seasonal scales in three natural populations of the lizard Microlophus atacamensis along a latitudinal temperature and rainfall gradient. We also used Niche Mapper to determinate the amount of thermally suitable time for activity for this species. Abundance and daily activity patterns varied greatly over the year for the three populations. In summer and spring, the daily activity times were greater, and were reduced in fall and winter seasons. In summer, when stressful heat loads should prohibit activity over a midday gap, lizards did not show bimodal patterns of activity. Instead, they move to the cooler intertidal habitat. Abundance and thermal quality in the southernmost coolest site was lower, and the potential annual activity time decreases with latitude. Contrary to expectations, lizards from this locality showed the largest body sizes possibly due to diet and/or time to sexual maturation. Our results indicate that the intertidal habitat is a key factor that influences daily and seasonal activity of M. atacamensis lizards. While this habitat is not climatically optimal for lizards, it allows them to behaviorally extend their activity window and gain access to food in the intertidal areas.  相似文献   

17.
The thermal biology of the small sand lizard, Liolaemus occipitalis, was studied in the coastal sand dunes at Quint?o Beach (Palmares do Sul, Rio Grande do Sul, Brazil; 30 degrees 24' S and 50 degrees 17' W), between September, 1998 and August, 1999. Liolaemus occipitalis presented a mean body temperature of 30.89 degrees C (SD = 4.43 degrees C; min = 16.4 degrees C; max = 40.2 degrees C; N = 270), that varied on a daily and seasonal basis according to microhabitat thermal alterations. The substrate temperature was the main heat source for thermoregulation of L. occipitalis as in all seasons of the year it was responsible for the animals' temperature variation (82% of the collected lizards in the spring; 60% in the summer; 84% in the fall and 68% in the winter). The results indicate that L. occipitalis is a saxicolous, thigmothermic and heliothermic species that regulates its body temperature through behavioral mechanisms.  相似文献   

18.
Asian oyster Crassostrea ariakensis is being considered for introduction to Atlantic coastal waters of the USA. Successful aquaculture of this species will depend partly on mitigating impacts by Bonamia sp., a parasite that has caused high C. ariakensis mortality south of Virginia. To better understand the biology of this parasite and identify strategies for management, we evaluated its seasonal pattern of infection in C. ariakensis at two North Carolina, USA, locations in 2005. Small (<50 mm) triploid C. ariakensis were deployed to upwellers on Bogue Sound in late spring (May), summer (July), early fall (September), late fall (November), and early winter (December) 2005; and two field sites on Masonboro Sound in September 2005. Oyster growth and mortality were evaluated biweekly at Bogue Sound, and weekly at Masonboro, with Bonamia sp. prevalence evaluated using parasite-specific PCR. We used histology to confirm infections in PCR-positive oysters. Bonamia sp. appeared in the late spring Bogue Sound deployment when temperatures approached 25 degrees C, six weeks post-deployment. Summer- and early fall-deployed oysters displayed Bonamia sp. infections after 3-4 weeks. Bonamia sp. prevalences were 75% in Bogue Sound, and 60% in Masonboro. While oyster mortality reached 100% in late spring and summer deployments, early fall deployments showed reduced (17-82%) mortality. Late fall and early winter deployments, made at temperatures <20 degrees C, developed no Bonamia sp. infections at all. Seasonal Bonamia sp. cycling, therefore, is influenced greatly by temperature. Avoiding peak seasonal Bonamia sp. activity will be essential for culturing C. ariakensis in Bonamia sp.-enzootic waters.  相似文献   

19.
Abstract This study examined how the standard metabolic rate of tegu lizards, a species that undergoes large ontogenetic changes in body weight with associated changes in life-history traits, is affected by changes in body mass, body temperature, season, and life-history traits. We measured rates of oxygen consumption (Vo(2)) in 90 individuals ranging in body mass from 10.4 g to 3.75 kg at three experimental temperatures (17 degrees , 25 degrees , and 30 degrees C) over the four seasons. We found that standard metabolic rate scaled to the power of 0.84 of body mass at all experimental temperatures in all seasons and that thermal sensitivity of metabolism was relatively low (Q(10) approximately 2.0-2.5) over the range from 17 degrees to 30 degrees C regardless of body size or season. Metabolic rates did vary seasonally, being higher in spring and summer than in autumn and winter at the same temperatures, and this was true regardless of animal size. Finally, in this study, the changes in life-history traits that occurred ontogenetically were not accompanied by significant changes in metabolic rate.  相似文献   

20.
Viviparity in reptiles is hypothesized to evolve in cold climates at high latitudes and high elevations through selection for progressively longer periods of egg retention. Oxygen consumption of embryos increases during development and therefore longer periods of egg retention should be associated with maternal or embryonic features that enhance embryonic oxygen availability. We tested the hypotheses that embryos of the oviparous lizard Sceloporus undulatus from a high-latitude population in New Jersey are oviposited at more advanced developmental stages and have a higher growth rate at low oxygen partial pressures ( p O2) than embryos from a low-latitude population in South Carolina. These hypotheses were rejected; embryos from the two populations did not differ in embryonic stage at oviposition, survival, rate of differentiation or growth in mass when incubated under simulated in utero conditions at low oxygen concentrations. We also estimated the effective p O2 experienced by lizard embryos in utero . At an effective p O2 of 8.6 kPa (9% O2), development of S. undulatus embryos is arrested at Dufaure and Hubert stage 30 and at a dry mass of 0.8 mg. Physiological and morphological features of gravid females, embryos, or both, that facilitate oxygen uptake for developing embryos appear to be a critical early step during the evolution of reptilian viviparity. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 289–299.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号