首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure.  相似文献   

2.
In all organisms, type II DNA topoisomerases are essential for untangling chromosomal DNA. We have determined the structure of the DNA-binding core of the Methanococcus jannaschii DNA topoisomerase VI A subunit at 2.0 A resolution. The overall structure of this subunit is unique, demonstrating that archaeal type II enzymes are distinct from other type II topoisomerases. However, the core structure contains a pair of domains that are also found in type IA and classic type II topoisomerases. Together, these regions may form the basis of a DNA cleavage mechanism shared among these enzymes. The core A subunit is a dimer that contains a deep groove that spans both protomers. The dimer architecture suggests that DNA is bound in the groove, across the A subunit interface, and that the two monomers separate during DNA transport. The A subunit of topoisomerase VI is homologous to the meiotic recombination factor, Spo11, and this structure can serve as a template for probing Spo11 function in eukaryotes.  相似文献   

3.
Members of the GHL ATPase superfamily, including type II topoisomerases, Hsp90-class chaperones, and MutL, all share a common GHKL-type ATP-binding fold and act as nucleotide-controlled 'molecular clamps'. These enzymes' ATP-binding sites have proven to be rich drug targets, and certain inhibitors of type II topoisomerases and Hsp90 bind to this region and competitively inhibit these enzymes. Recently, it was found that radicicol, a drug known to block Hsp90 function, also inhibits the archaeal type IIB topoisomerase topo VI. Here, we use X-ray crystallography to show that despite low sequence identity ( approximately 10-12%) between topo VI and Hsp90, radicicol binds to the ATPase sites of these two enzymes in an equivalent manner. We further demonstrate that radicicol inhibits both the dimerization of the topo VI ATPase domains and ATP hydrolysis, two critical steps in the enzyme's strand passage reaction. This work contributes to a growing set of structures detailing the interactions between GHL-family proteins and various drugs, and reveals radicicol as a versatile scaffold for targeting distantly related GHL enzymes.  相似文献   

4.
5.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

6.
7.
Type II DNA topoisomerases (topos) are essential and ubiquitous enzymes that perform important intracellular roles in chromosome condensation and segregation, and in regulating DNA supercoiling. Eukaryotic topo II, a type II topoisomerase, is a homodimeric enzyme that solves topological entanglement problems by using the energy from ATP hydrolysis to pass one segment of DNA through another by way of a reversible, enzyme-bridged double-stranded break. This DNA break is linked to the protein by a phosphodiester bond between the active site tyrosine of each subunit and backbone phosphate of DNA. The opening and closing of the DNA gate, a critical step for strand passage during the catalytic cycle, is coupled to this enzymatic cleavage/religation of the backbone. This reversible DNA cleavage reaction is the target of a number of anticancer drugs, which can elicit DNA damage by affecting the cleavage/religation equilibrium. Because of its clinical importance, many studies have sought to determine the manner in which topo II interacts with DNA. Here we highlight recent single-molecule fluorescence resonance energy transfer and crystallographic studies that have provided new insight into the dynamics and structure of the topo II DNA gate.  相似文献   

8.
The properties were compared for maize nuclear and mitochondrial DNA topoisomerases I (topo I). Some differences in their ability to bind to single-stranded DNA were revealed. Mitochondrial topo I was active only in the presence of Mg2+, whereas the activity of the nuclear enzyme did not completely depend on Mg2+, although being essentially stimulated in the presence of Mg2+. The mitochondrial enzyme covalently bound to the 5′ DNA end, as unique to prokaryotic topo I. The nuclear enzyme, like all eukaryotic topo I, covalently bound to the 3′ DNA end. A search for homologous sequences in several databases revealed genes probably encoding mitochondrial topo I in other higher plants. Using cDNA sequencing and in silico analysis, an orthologous gene was revealed in the maize genome. The gene was strongly homologous to the genes encoding prokaryotic topo I, which could explain the differences in properties between mitochondrial and nuclear topo I from maize. The presence of prokaryotic topo I in mitochondria of higher plants is interesting and important for studying the evolution of these plant organelles and the mechanisms of mitochondrial genome expression.  相似文献   

9.
Drosophila topoisomerase (topo) IIIbeta is a member of the type IA family of DNA topoisomerases, which generates a single-stranded break to form a covalent complex with the 5'-end of DNA. We show here that a purified preparation of topo IIIbeta is able to convert a hypernegatively supercoiled substrate into primarily nicked, but also linear, DNA at enzyme/DNA molar ratios of 5:1 or greater. Although the optimal temperature for the relaxation activity is between 37 and 45 degrees C, maximal cleavage occurs between 23 and 30 degrees C, a temperature range that is more physiologically relevant for fruit flies. The cleavage products require protease treatment to enter the gel, they are stable over time, they are reversible, and they are not observed with a Y332F active site mutant, which further supports the idea that topo IIIbeta possesses an endonucleolytic cleavage activity. This cleavage activity appears to be specific for highly unwound, or single strand-containing substrates. Southern blot analysis of the cleavage products demonstrates that the topo IIIbeta cleavage activity is concentrated primarily in highly A/T-rich regions. These results suggest that topo IIIbeta may function as a reversible endonuclease in vivo by recognizing and cleaving/rejoining DNA structures with single-stranded character.  相似文献   

10.
11.
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To understand the mechanism of irreversible trapping of the topo II-cleavable complex, we have investigated the reactivity of clerocidin per se towards DNA. We show here that the drug is able to nick negatively supercoiled plasmids. DNA cleavage by clerocidin in enzyme-free medium is due to the ability of the drug to form covalent adducts with guanines. Indeed, clerocidin was able to specifically react with short oligonucleotides when the guanines were unpaired and exposed as in bulges or in the single-strand form. The clerocidin epoxy group attacks the nitrogen at position 7 of guanines, leading to strand scission at the modified site. Our findings also demonstrate that trapping of topoisomerases by clerocidin is specific for type II enzymes. The guanine-alkylating ability of clerocidin suggests an unprecedented mechanism of topo II poisoning, according to which the enzyme renders the drug reactive toward DNA by distorting the double-helical structure of the nucleic acid at the cleavage site.  相似文献   

12.
Type II DNA topoisomerases mediate the passage of one DNA duplex through a transient break in another, an event essential for chromosome segregation and cell viability. The active sites of the type II topoisomerase dimer associate covalently with the DNA break-points and must separate by at least the width of the second DNA duplex to accommodate transport. A new structure of the Saccharomyces cerevisiae topoisomerase II DNA-binding and cleavage core suggests that in addition to conformational changes in the DNA-opening platform, a dramatic reorganization of accessory domains may occur during catalysis. These conformational differences have implications for both the DNA-breaking and duplex-transport events in the topo II reaction mechanism, suggest a mechanism by which two distinct drug-resistance loci interact, and illustrate the scope of structural changes in the cycling of molecular machines.  相似文献   

13.
Abstract

The binding activities of the 170 kDa and the 180 kDa human topoisomerases II (topo IIa and topo IIβ) to linear DNA fragments with different degrees of curvature were characterized. In gel retardation experiments it was shown that both forms of the enzyme bind preferentially to a curved 287 bp fragment, forming a detectable stable complex. The affinity for straight DNA fragments of similar length is significantly lower. Both a commercially available topo IIa, isolated from placenta, and topo IIα and topo IIβ purified from nuclear extracts of the Namahva lymphoma tissue culture line gave similar results. The effects of double-stranded poly[d(A-T)], poly[d(G-C)], supercoiled plasmid DNA and linear Z-DNA on the topo II- complex with curved DNA were analyzed in competition experiments. The hierarchy of affinities of the 180 kDa topo IIβ for these DNAs has the order: linear left-handed DNA > supercoiled DNA ? curved DNA ? poly[d(A-T)] ? poly[d(G-C)]. The 170 kDa topo IIa binds with similar affinity to curved DNA and linear Z-DNA ? supercoiled DNA ? linear B- DNA The data imply that human topoisomerase II binding is more sensitive to DNA secondary structure than to DNA sequence per se. The ability of the enzyme to preferentially recognize a wide variety of sequences in unusual secondary structures suggests a mode of targeting the enzyme in vivo to regions of high negative supercoiling.  相似文献   

14.
A key step in the DNA transport by type II DNA topoisomerase is the formation of a double-strand break with the enzyme being covalently linked to the broken DNA ends (referred to as the cleavage complex). In the present study, we have analyzed the formation and structure of the cleavage complex catalyzed by Sufolobus shibatae DNA topoisomerase VI (topoVI), a member of the recently described type IIB DNA topoisomerase family. A purification procedure of a fully soluble recombinant topoVI was developed by expressing both subunits simultaneously in Escherichia coli. Using this recombinant enzyme, we observed that the formation of the double-strand breaks on supercoiled or linear DNA is strictly dependent on the presence of ATP or AMP-PNP. This result suggests that ATP binding is required to stabilize an enzyme conformation able to cleave the DNA backbone. The structure of cleavage complexes on a linear DNA fragment have been analyzed at the nucleotide level. Similarly to other type II DNA topoisomerases, topoVI is covalently attached to the 5'-ends of the broken DNA. However, sequence analysis of the double-strand breaks revealed that they are all characterized by staggered two-nucleotide long 5' overhangs, contrasting with the four-base staggered double-strand breaks catalyzed by type IIA DNA topoisomerases. While no clear consensus sequences surrounding the cleavage sites could be described, interestingly A and T nucleotides are highly represented on the 5' extensions, giving a first insight on the preferred sequences recognized by this type II DNA topoisomerase.  相似文献   

15.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   

16.
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.  相似文献   

17.
Type IIA and type IIB topoisomerases each possess the ability to pass one DNA duplex through another in an ATP-dependent manner. The role of ATP in the strand passage reaction is poorly understood, particularly for the type IIB (topoisomerase VI) family. We have solved the structure of the ATP-binding subunit of topoisomerase VI (topoVI-B) in two states: an unliganded monomer and a nucleotide-bound dimer. We find that topoVI-B is highly structurally homologous to the entire 40-43 kDa ATPase region of type IIA topoisomerases and MutL proteins. Nucleotide binding to topoVI-B leads to dimerization of the protein and causes dramatic conformational changes within each protomer. Our data demonstrate that type IIA and type IIB topoisomerases have descended from a common ancestor and reveal how ATP turnover generates structural signals in the reactions of both type II topoisomerase families. When combined with the structure of the A subunit to create a picture of the intact topoisomerase VI holoenzyme, the ATP-driven motions of topoVI-B reveal a simple mechanism for strand passage by the type IIB topoisomerases.  相似文献   

18.
The reactions of plasmid DNA modified with the novel acridinylthiourea, 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (1), and the corresponding intercalator-tethered platinum complex (2) with human type I and type II topoisomerases have been studied. Assays were based on evaluating DNA cleavage products resulting from incubations of drug-modified DNA in cell-free systems. 2 produces double-strand breaks in the presence of topo II while 1 proved to be a dual topo I/topo II poison.  相似文献   

19.
DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ∼ 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号