首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES). A thorough deletion analysis study within the 5'-ATR led us to define a 176-nt region as being necessary and sufficient for IRES function at four codons present in a downstream 308-nt RNA segment. Unexpectedly, a single IRES module is therefore responsible for translation initiation at four distantly localized codons. The determination of the FGF-2 5'-ATR RNA secondary structure by enzymatic and chemical probing experiments showed that the FGF-2 IRES contained two stem-loop regions and a G quartet motif that constitute novel structural determinants of IRES function.  相似文献   

2.
Translation of the hepatitis C virus (HCV) polyprotein is initiated at an internal ribosome entry site (IRES) element in the 5' untranslated region of HCV RNA. The HCV IRES element interacts directly with the 40S subunit, and biochemical experiments have implicated RNA elements near the AUG start codon as required for IRES-40S subunit complex formation. The data we present here show that two RNA stem loops, domains IIId and IIIe, are involved in IRES-40S subunit interaction. The structures of the two RNA domains were solved by NMR spectroscopy and reveal structural features that may explain their role in IRES function.  相似文献   

3.
Heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP) 1 was implicated in cap-independent translation by binding to the internal ribosome entry site in the 5′ untranslated region (UTR) of NF-κB-repressing factor (NRF). Two different NRF mRNAs have been identified so far, both sharing the common 5′ internal ribosome entry site but having different length of 3′ UTRs. Here, we used a series of DNA and RNA luciferase reporter constructs comprising 5′, 3′ or both NRF UTRs to study the effect of JKTBP1 on translation of NRF mRNA variants. The results indicate that JKTBP1 regulates the level of NRF protein expression by binding to both NRF 5′ and 3′ UTRs. Using successive deletion and point mutations as well as RNA binding studies, we define two distinct JKTBP1 binding elements in NRF 5′ and 3′ UTRs. Furthermore, JKTBP1 requires two distinct RNA binding domains to interact with NRF UTRs and a short C-terminal region for its effect on NRF expression. Together, our study shows that JKTBP1 contributes to NRF protein expression via two disparate mechanisms: mRNA stabilization and cap-independent translation. By binding to 5′ UTR, JKTBP1 increases the internal translation initiation in both NRF mRNA variants, whereas its binding to 3′ UTR elevated primarily the stability of the major NRF mRNA. Thus, JKTBP1 is a key regulatory factor linking two pivotal control mechanisms of NRF gene expression: the cap-independent translation initiation and mRNA stabilization.  相似文献   

4.
We show that the vector-derived long dsRNA specifically inhibits the replication of HCV RNA in HCV replicon. We designed a long dsRNA targeted to the full-length HCV IRES/core elements (1-to 377-nt). Our results revealed that the replication of HCV RNA was reduced to near background levels in a sequence-specific manner by the long dsRNAs in the HCV replicon. We also designed four shRNAs against several regions (120- to 139-nt, 260- to 279-nt, 330- to 349-nt, and 340- to 359-nt) of the HCV IRES/Core elements. The two HCV IRES/core-specific shRNAs, 330- to 349-nt and 340- to 359-nt, containing the AUG initiation codon sequence showed stronger HCV inhibitory effects than the other two shRNAs, 120- to 139-nt and 260- to 279-nt.  相似文献   

5.
We show that the vector-derived long dsRNA specifically inhibits the replication of HCV RNA in HCV replicon. We designed a long dsRNA targeted to the full-length HCV IRES/core elements (1-to 377-nt). Our results revealed that the replication of HCV RNA was reduced to near background levels in a sequence-specific manner by the long dsRNAs in the HCV replicon. We also designed four shRNAs against several regions (120- to 139-nt, 260- to 279-nt, 330- to 349-nt, and 340- to 359-nt) of the HCV IRES/Core elements. The two HCV IRES/core-specific shRNAs, 330- to 349-nt and 340- to 359-nt, containing the AUG initiation codon sequence showed stronger HCV inhibitory effects than the other two shRNAs, 120- to 139-nt and 260- to 279-nt.  相似文献   

6.
The 5'-non-translated regions (5'NTR) of human immunoglobulin heavy chain binding protein (BiP), Antennapedia (Antp) ofDrosophilaand human fibroblast growth factor 2 (FGF-2) mRNAs are reported to mediate translation initiation by an internal ribosome binding mechanism. In this study, we investigate predicted features of the higher order structures folded in these 5'NTR sequences. Statistical analyses of RNA folding detected a 92 nt unusual folding region (UFR) from 129 to 220, close to the initiator AUG in the BiP mRNA. Details of the structural analyses show that the UFR forms a Y-type stem-loop structure with an additional stem-loop in the 3'-end resembling the common structure core found in the internal ribosome entry site (IRES) elements of picornavirus. The Y-type structural motif is also conserved among a number of divergent BiP mRNAs. We also find two RNA elements in the 5'-leader sequence of human FGF-2. The first RNA element (96 nt) is 2 nt upstream of the first CUG start codon located in the reported IRES element of human FGF-2. The second (107 nt) is immediately upstream of the authentic initiator AUG of the main open reading frame. Intriguingly, the folded RNA structural motif in the two RNA elements is conserved in other members of FGF family and shares the same structural features as that found in the 5'NTR of divergent BiP mRNAs. We suggest that the common RNA structural motif conserved in the diverse BiP and FGF-2 mRNAs has a general function in the internal ribosome binding mechanism of cellular mRNAs.  相似文献   

7.
8.
Hepatitis C viral (HCV) RNA includes an internal ribosome entry segment (IRES) that extends some 30 nt into the coding region and promotes internal initiation of translation at the authentic initiation codon at nt 342. The 5'-boundary of this IRES was mapped by in vitro translation and transfection assays and was found to lie between nt 42 and 71. Within these IRES boundaries there are, in most HCV strains, three AUG triplets upstream of the authentic initiation site. Although the first, 5'-proximal, of these is absolutely conserved, a mutational analysis showed that it is not a functional initiation codon. In particular, the G residue could be substituted provided compensatory mutations were made to maintain base pairing. The other two upstream AUGs are not absolutely conserved, and mutation of the third (5'-distal) had little effect on IRES activity. When an additional AUG codon was introduced by single-site mutation just upstream of the authentic initiation codon, it was found to be used when most of the IRES had been deleted to generate an RNA translated by the scanning ribosome mechanism, but was not used in the background of the full-length IRES when internal initiation is operative. These results argue that the IRES promotes direct ribosome entry immediately at, or indeed very close to, the authentic initiation codon, and that the upstream AUGs do not serve as ribosome entry sites.  相似文献   

9.
10.
11.
Hepatitis C virus (HCV) RNA is recognized and cleaved in vitro by RNase P enzyme near the AUG start codon. Because RNase P identifies transfer RNA (tRNA) precursors, it has been proposed that HCV RNA adopts structural similarities to tRNA. Here, we present experimental evidence of RNase P sensitivity conservation in natural RNA variant sequences, including a mutant sequence (A368–G) selected in vitro because it presented changes in the RNA structure of the relevant motif. The variation did not abrogate the original RNase P cleavage, but instead, it allowed a second cleavage at least 10 times more efficient, 4 nt downstream from the original one. The minimal RNA fragment that confers sensitivity to human RNase P enzyme was located between positions 299 and 408 (110 nt). Therefore, most of the tRNA-like domain resides within the viral internal ribosome entry site (IRES) element. In the variant, in which the mutation stabilizes a 4 nt stem–loop, the second cleavage required a shorter (60 nt) substrate, internal to the minimal fragment substrate, conforming a second tRNA-like structure with similarities to a ‘Russian-doll’ toy. This new structure did not impair IRES activity, albeit slightly reduced the efficiency of translation both in vitro and in transfected cells. Conservation of the original tRNA-like conformation together with preservation of IRES activity points to an essential role for this motif. This conservation is compatible with the presence of RNA structures with different complexity around the AUG start codon within a single viral population (quasispecies).  相似文献   

12.
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem–loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit''s decoding groove. This configuration depends on the sequence and structure of a different stem–loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.  相似文献   

13.
The hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) in its 5′ untranslated region, the structure of which is essential for viral protein translation. The IRES includes a predicted pseudoknot interaction near the AUG start codon, but the results of previous studies of its structure have been conflicting. Using mutational analysis coupled with activity and functional assays, we verified the importance of pseudoknot base pairings for IRES-mediated translation and, using 35 mutants, conducted a comprehensive study of the structural tolerance and functional contributions of the pseudoknot. Ribosomal toeprinting experiments show that the entirety of the pseudoknot element positions the initiation codon in the mRNA binding cleft of the 40S ribosomal subunit. Optimal spacing between the pseudoknot and the start site AUG resembles that between the Shine–Dalgarno sequence and the initiation codon in bacterial mRNAs. Finally, we validated the HCV IRES pseudoknot as a potential drug target using antisense 2′-OMe oligonucleotides.  相似文献   

14.
The retroviral genomic RNA is the messenger for the synthesis of the group-specific antigen (gag) and polymerase precursors of the major structural proteins and enzymes of the virion. The 5'-untranslated leader of the simian immunodeficiency virus (SIV) genomic RNA is formed of highly structured domains involved in key steps of the viral life cycle. Thus, the presence of stable RNA structures between the 5'-cap and the gag start codon are thought to strongly inhibit scanning of a 43 S preinitiation ribosomal complex. This prompted us to look for an alternative to the canonical ribosome scanning. By using a standard bicistronic assay in the rabbit reticulocyte lysate, we show that the SIVmac 5'-leader contains an internal ribosome entry segment (IRES) and that gene expression driven by this IRES is stimulated upon cleavage of eukaryotic initiation factor 4G. Deletion analysis revealed that the sequence between the major splice donor and the gag AUG codon is required for IRES activity. DNA transfection and viral transduction experiments in both NIH-3T3 and COS-7 cells confirmed that translation driven by the SIV leader is IRES-dependent and thus insensitive to the immunosuppressant rapamycin. Identification of an IRES in SIV is of particular interest for the understanding of lentivirus replication and also for the design of novel lentiviral vectors suitable for gene transfer.  相似文献   

15.
Higher-order cis-acting RNA replication structures have been identified in the 3'- and 5'-terminal untranslated regions (UTRs) of a bovine coronavirus (BCoV) defective interfering (DI) RNA. The UTRs are identical to those in the viral genome, since the 2.2-kb DI RNA is composed of only the two ends of the genome fused between an internal site within the 738-nucleotide (nt) 5'-most coding region (the nsp1, or p28, coding region) and a site just 4 nt upstream of the 3'-most open reading frame (ORF) (the N gene). The joined ends of the viral genome in the DI RNA create a single continuous 1,635-nt ORF, 288 nt of which come from the 738-nt nsp1 coding region. Here, we have analyzed features of the 5'-terminal 288-nt portion of the nsp1 coding region within the continuous ORF that are required for DI RNA replication. We observed that (i) the 5'-terminal 186 nt of the nsp1 coding region are necessary and sufficient for DI RNA replication, (ii) two Mfold-predicted stem-loops within the 186-nt sequence, named SLV (nt 239 to 310) and SLVI (nt 311 to 340), are supported by RNase structure probing and by nucleotide covariation among closely related group 2 coronaviruses, and (iii) SLVI is a required higher-order structure for DI RNA replication based on mutation analyses. The function of SLV has not been evaluated. We conclude that SLVI within the BCoV nsp1 coding region is a higher-order cis-replication element for DI RNA and postulate that it functions similarly in the viral genome.  相似文献   

16.
17.
18.
Translation initiation of picornavirus RNA is driven by an internal ribosome entry site (IRES) element located upstream of the initiator codon. RNA structure organization as well as RNA-protein interaction plays a fundamental role in internal initiation. IRES activity has been mainly analyzed in the context of reporter genes, lacking regions of the viral genome potentially affecting translation efficiency. With the aim to understand the vulnerability of the IRES and translation start region to small molecules in the context of the viral genome, we designed a set of customized RNase-resistant 2'O-methyl antisense oligoribonucleotides (2'OMe AONs) based on RNA structure data. These AONs were then used to monitor their capacity to interfere viral RNA translation, and thus, to inhibit virus yield. Foot-and-mouth disease virus (FMDV) RNA translation can be initiated at two in-frame AUG codons. We show here that a 2'OMe AON complementary to AUG2 inhibited viral multiplication more efficiently than the one that targeted AUG1. Furthermore, the response of the viral RNA to AONs targeting the IRES region denoted important differences between tissue culture cells and cell-free systems, reinforcing the need to analyze viral RNA response in living cells. Importantly, we have identified four specific motifs within the IRES element that are targets for viral inhibitors both in tissue culture cells and in cell-free systems. The identified targets define accessible regions to small molecules, which disturb either the RNA structural organization or the RNA-protein interactions needed to initiate translation in FMDV RNA.  相似文献   

19.
The use of internal ribosome entry sites (IRESs) is one of the unorthodox mechanisms exploited by viruses to initiate the translation of internal genes. Herein, we report a plant virus exploiting an IRES and its 3'-untranslated region (UTR) to express its internal genes, notably the 3'-proximal viral coat protein gene. Hibiscus chlorotic ringspot virus (HCRSV), a positive-strand non-polyadenylated RNA virus, was demonstrated to harbor a unique 100-nucleotide (nt) IRES, located 124 nt upstream of the coat protein gene, that could function in wheat germ extract, rabbit reticulocyte lysate, and mammalian cells. In comparison with other known IRESs of picornaviruses and eukaryotic mRNAs, this 100-nt IRES is distinctively short and simple. The IRES activity was tested in homologous and heterologous bicistronic constructs, and the expression of the 3'-proximal gene was enhanced when the 3'-UTR was present. When the IRES element was bisected, each half still possessed IRES activity and could initiate internal translation on its own. Site-directed mutagenesis and deletion analyses revealed that the primary sequence within the 5' half was crucial for IRES activity, whereas the primary sequence of the second half and a GNRA motif were non-essential. To our knowledge, this is the first report describing a mechanism whereby an IRES, located in the 3' portion of the virus genome, co-operates with the 3'-UTR to enhance gene expression differentially.  相似文献   

20.
Members of the picornavirus family initiate translation of their RNA genomes by a cap-independent mechanism in which ribosomes bind to an internal site in the 5' untranslated region (5'-UTR). This unique process requires an internal ribosome entry site (IRES), a highly structured RNA whose function is mediated in part by interactions with cell proteins. The IRES element of human rhinovirus 2 (HRV-2) extends from nucleotide (nt) 10 to between nt 544 and 568 and has been shown to interact with two cell proteins, pyrimidine tract-binding protein (pPTB) and p97. To map the specific regions of HRV-14 RNA that bind cell proteins, mobility shift, UV cross-linking and Western immunoblot analyses were performed. The results indicate that an RNA sequence from nt 538 to 591 interacts with pPTB and La, two proteins previously shown to functionally interact with the IRES elements of several picornaviruses. Two additional proteins, p97 and p68, were also cross-linked to nt 538 to 591 RNA. These four proteins interact with a putatively unstructured portion of the 5'-UTR that contains a polypyrimidine tract and has been shown to be present at the 3' border of sequences that are essential for IRES function of HRV-2. These protein-RNA interactions are likely to play a role in internal initiation of translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号