首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Changes in Epstein-Barr virus (EBV) and cell RNA levels were assayed following immunoglobulin G (IgG) cross-linking-induced replication in latency 1-infected Akata Burkitt B lymphoblasts. EBV replication as assayed by membrane gp350 expression was approximately 5% before IgG cross-linking and increased to more than 50% 48 h after induction. Seventy-two hours after IgG cross-linking, gp350-positive cells excluded propidium iodide as well as gp350-negative cells. EBV RNA levels changed temporally in parallel with previously defined sensitivity to inhibitors of protein or viral DNA synthesis. BZLF1 immediate-early RNA levels doubled by 2 h and reached a peak at 4 h, whereas BMLF1 doubled by 4 h with a peak at 8 h, and BRLF1 doubled by 8 h with peak at 12 h. Early RNAs peaked at 8 to 12 h, and late RNAs peaked at 24 h. Hybridization to intergenic sequences resulted in evidence for new EBV RNAs. Surprisingly, latency III (LTIII) RNAs for LMP1, LMP2, EBNALP, EBNA2, EBNA3A, EBNA3C, and BARTs were detected at 8 to 12 h and reached maxima at 24 to 48 h. EBNA2 and LMP1 were at full LTIII levels by 48 h and localized to gp350-positive cells. Thus, LTIII expression is a characteristic of late EBV replication in both B lymphoblasts and epithelial cells in immune-comprised people (J. Webster-Cyriaque, J. Middeldorp, and N. Raab-Traub, J. Virol. 74:7610-7618, 2000). EBV replication significantly altered levels of 401 Akata cell RNAs, of which 122 RNAs changed twofold or more relative to uninfected Akata cells. Mitogen-activated protein kinase levels were significantly affected. Late expression of LTIII was associated with induction of NF-kappaB responsive genes including IkappaBalpha and A20. The exclusion of propidium, expression of EBV LTIII RNAs and proteins, and up-regulation of specific cell RNAs are indicative of vital cell function late in EBV replication.  相似文献   

3.
Epstein-Barr virus (EBV) is capable of adopting three distinct forms of latency: the type III latency program, in which six EBV-encoded nuclear antigens (EBNAs) are expressed, and the type I and type II latency programs, in which only a single viral nuclear protein, EBNA1, is produced. Several groups have reported heavy CpG methylation of the EBV genome in Burkitt's lymphoma cell lines which maintain type I latency, and loss of viral genome methylation in tumor cell lines has been correlated with a switch to type III latency. Here, evidence that the type III latency program must be inactivated by methylation to allow EBV to enter the type I or type II restricted latency program is provided. The data demonstrates that the EBNA1 gene promoter, Qp, active in types I and II latency, is encompassed by a CpG island which is protected from methylation. CpG methylation inactivates the type III latency program and consequently allows the type I or II latency program to operate by alleviating EBNA1-mediated repression of Qp. Methylation of the type III latency EBNA gene promoter, Cp, appears to be essential to prevent type III latency, since EBNA1 is expressed in all latently infected cells and, as shown here, is the only viral antigen required for activation of Cp. EBV is thus a pathogen which subverts host-cell-determined methylation to regulate distinct genetic programs.  相似文献   

4.
5.
6.
7.
8.
Epstein-Barr virus (EBV)-negative Burkitt lymphomas (BLs) can be infected in vitro with prototype EBV strains to study how the virus may affect the phenotype of tumor cells. Studies thus far have concentrated on the use of transforming B95-8 and nontransforming P3HR1 strains. Immunological and phenotypic differences between the sublines infected with these two strains were reported. The majority of these differences, if not all, can be attributed to the lack of EBNA-2 coding sequences in the P3HR1 strain. The recent development of a selectable Akata strain has opened up new possibilities for infecting epithelial and T cells as well. We infected five EBV-negative BL lines with the recombinant Akata virus. Our results indicate that the infected cell lines BL28, Ramos, and DG75 express EBNA-1, EBNA-2, and LMP1, the viral proteins associated with type III latency, and use both YUK and QUK splices. In contrast, two EBV-negative variants of Akata and Mutu when reinfected displayed restricted type I latency and expressed only EBNA-1. All clones of infected Mutu cells used the QUK splice exclusively. The usage of Qp was observed in a majority of Akata clones. Some Akata clones, however, were found to have double promoter usage (Qp and C/Wp) but at 4 months after infection did not express EBNA-2. The results demonstrate differential regulation of EBV latency in BLs with the same recombinant viral strain and suggest that the choice of latency type may be cell dependent. The restricted latency observed for infected Akata and Mutu cells indicates that a BL may opt for type I latency in the absence of immune pressure as well.  相似文献   

9.
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.  相似文献   

10.
Burkitt lymphoma (BL) commonly exhibits Epstein-Barr virus (EBV) positivity associated with latent chronic infection. Models of acute EBV infection have been associated with cellular resistance to apoptosis. However, the effect of latent long-term EBV infection on apoptosis induced by drugs is not well defined. To determine this, we have studied the response of the Akata EBV+ cell line (type I latency) to etoposide, before and after downregulating EBV gene expression. We observed that downregulating EBV nuclear antigen-1 (EBNA-1) expression with siRNAs reverted cellular sensitivity to etoposide. In accordance with this finding, Akata EBV+ cells showed increased sensitivity to etoposide, when compared to the Akata EBV- cells. We also observed that Akata EBV+ cells presented increased apoptosis levels and decreased Bcl-xL mRNA and protein levels, when compared to the Akata EBV- cells. In addition, Akata EBV+ cells contained less endoplasmic reticulum (ER) than EBV- cells. Finally, downregulation of EBV with EBNA-1 siRNAs caused an increase in the expression of Bcl-xL indicating that EBV is responsible for the differences found between the Akata EBV+ and EBV- cell lines.  相似文献   

11.
12.
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), which is critical for EBV-induced B-cell transformation, is also abundantly expressed during the lytic cycle of viral replication. However, the biological significance of this strong LMP1 induction remains unknown. We engineered a bacterial artificial chromosome clone containing the entire genome of Akata strain EBV to specifically disrupt the LMP1 gene. Akata cell clones harboring the episomes of LMP1-deleted EBV were established, and the effect of LMP1 loss on virus production was investigated. We found that the degree of viral DNA amplification and the expression levels of viral late gene products were unaffected by LMP1 loss, demonstrating that the LMP1-deleted EBV entered the lytic replication cycle as efficiently as the wild-type counterpart. This was confirmed by our electron microscopic observation that nucleocapsid formation inside nuclei occurred even in the absence of LMP1. By contrast, loss of LMP1 severely impaired virus release into culture supernatants, resulting in poor infection efficiency. The expression of truncated LMP1 in Akata cells harboring LMP1-deleted EBV rescued the virus release into the culture supernatant and the infectivity, and full-length LMP1 partially rescued the infectivity. These results indicate that inducible expression of LMP1 during the viral lytic cycle plays a critical role in virus production.  相似文献   

13.
Previous studies on Epstein-Barr virus (EBV)-positive B-cell lines have identified two distinct forms of virus latency. Lymphoblastoid cell lines generated by virus-induced transformation of normal B cells in vitro, express the full spectrum of six EBNAs and three latent membrane proteins (LMP1, LMP2A, and LMP2B); furthermore, these lines often contain a small fraction of cells spontaneously entering the lytic cycle. In contrast, Burkitt's lymphoma-derived cell lines retaining the tumor biopsy cell phenotype express only one of the latent proteins, the nuclear antigen EBNA1; such cells do not enter the lytic cycle spontaneously but may be induced to do so by treatment with such agents as tetradecanoyl phorbol acetate and anti-immunoglobulin. The present study set out to determine whether activation of full virus latent-gene expression was a necessary accompaniment to induction of the lytic cycle in Burkitt's lymphoma lines. Detailed analysis of Burkitt's lymphoma lines responding to anti-immunoglobulin treatment revealed three response pathways of EBV gene activation from EBNA1-positive latency. A first, rapid response pathway involves direct entry of cells into the lytic cycle without broadening of the pattern of latent gene expression; thereafter, the three "latent" LMPs are expressed as early lytic cycle antigens. A second, delayed response pathway in another cell subpopulation involves the activation of full latent gene expression and conversion to a lymphoblastoidlike cell phenotype. A third response pathway in yet another subpopulation involves the selective activation of LMPs, with no induction of the lytic cycle and with EBNA expression still restricted to EBNA1; this type of latent infection in B lymphocytes has hitherto not been described. Interestingly, the EBNA1+ LMP+ cells displayed some but not all of the phenotypic changes normally induced by LMP1 expression in a B-cell environment. These studies highlight the existence of four different types of EBV infection in B cells, including three distinct forms of latency, which we now term latency I, latency II, and latency III.  相似文献   

14.
15.
During latency, Epstein-Barr virus (EBV) is stably maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both these processes require a single viral protein, EBV nuclear antigen 1 (EBNA1), which binds two clusters of cognate binding sites within the latent viral origin, oriP. EBNA1 is known to associate with cellular metaphase chromosomes through chromosome-binding domains within its amino terminus, an association that we have determined to be required not only for the partitioning of oriP plasmids but also for their replication. One of the chromosome-binding domains of EBNA1 associates with a cellular nucleolar protein, EBP2, and it has been proposed that this interaction underlies that ability of EBNA1 to bind metaphase chromosomes. Here we demonstrate that EBNA1's chromosome-binding domains are AT hooks, a DNA-binding motif found in a family of proteins that bind the scaffold-associated regions on metaphase chromosomes. Further, we demonstrate that the ability of EBNA1 to stably replicate and partition oriP plasmids correlates with its AT hook activity and not its association with EBP2. Finally, we examine the contributions of EBP2 toward the ability of EBNA1 to associate with metaphase chromosomes in human cells, as well as support the replication and partitioning of oriP plasmids in human cells. Our results indicate that it is unlikely that EBP2 directly mediates these activities of EBNA1 in human cells.  相似文献   

16.
Epstein-Barr virus (EBV) is a strict human pathogen for which no small animal models exist. Plasmids that contain the EBV plasmid origin of replication, oriP, and express EBV nuclear antigen 1 (EBNA1) are stably maintained extrachromosomally in human cells, whereas these plasmids replicate poorly in rodent cells. However, the ability of oriP and EBNA1 to maintain the entire EBV episome in proliferating rodent cells has not been determined. Expression of the two human B-cell receptors for EBV on the surfaces of murine B cells allows efficient viral entry that leads to the establishment of latent EBV infection and long-term persistence of the viral genome. Latent gene expression in these cells resembles the latency II profile in that EBNA1 and LMP1 can be detected whereas EBNA2 and the EBNA3s are not expressed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号