首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological and pathologicalCa2+ loads are thought to be takenup by mitochondria via a process dependent on aerobic metabolism. Wesought to determine whether human diploid fibroblasts from a patientwith an inherited defect in pyruvate dehydrogenase (PDH) exhibit adecreased ability to sequester cytosolicCa2+ into mitochondria.Mobilization of Ca2+ stores withbradykinin (BK) increased the cytosolicCa2+ concentration([Ca2+]c)to comparable levels in control and PDH-deficient fibroblasts. Innormal fibroblasts transfected with plasmid DNA encodingmitochondrion-targeted apoaequorin, BK elicited an increase inCa2+-dependent aequorinluminescence corresponding to an increase in the mitochondrialCa2+ concentration([Ca2+]mt)of 2.0 ± 0.2 µM. The mitochondrial uncoupling agent carbonyl cyanidep-(trifluoromethoxy)phenylhydrazoneblocked the BK-induced [Ca2+]mtincrease, although it did not affect the[Ca2+]ctransient. Basal[Ca2+]cand[Ca2+]mtin control and PDH-deficient cells were similar. However, confocalimaging of the potential-sensitive dye JC-1 indicated that thepercentage of highly polarized mitochondria was reduced from 30 ± 1% in normal cells to 19 ± 2% in the PDH-deficient fibroblasts. BK-elicited[Ca2+]mttransients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability totake up cytosolic Ca2+. Thus cellswith compromised aerobic metabolism have a reduced capacity tosequester Ca2+.

  相似文献   

2.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

3.
Antisense oligodeoxynucleotides (AS-oligos) targeted to theNa+/Ca2+exchanger (NCX) inhibit NCX-mediatedCa2+ influx in mesenteric artery(MA) myocytes [Am. J. Physiol.269 (Cell Physiol. 38):C1340-C1345, 1995]. Here, we show AS-oligo knockdown ofNCX-mediated Ca2+ efflux. Ininitial experiments, the cytosolic freeCa2+ concentration([Ca2+]cyt)was raised, and sarcoplasmic reticulum (SR)Ca2+ sequestration was blockedwith caffeine and cyclopiazonic acid; the extracellularNa+-dependent (NCX) component ofCa2+ efflux was then selectivelyinhibited in AS-oligo-treated cells but not in controls (no oligos ornonsense oligos). In contrast, theLa3+-sensitive (plasmalemmaCa2+ pump) component ofCa2+ efflux was unaffected inAS-oligo-treated cells. Knockdown of NCX activity was reversed byincubating AS-oligo-treated cells in normal media for 5 days. Transient[Ca2+]cytelevations evoked by serotonin (5-HT) at 15-min intervals inAS-oligo-treated cells were indistinguishable from those in controls.When cells were stimulated every 3 min, however, the peak amplitudes ofthe second and third responses were larger, and[Ca2+]cytreturned to baseline more slowly, in AS-oligo-treated cells than incontrols. Peak 5-HT-evoked responses in the controls, but notAS-oligo-treated cells, were augmented more than twofold inNa+-free media. This implies thatNCX is involved in Na+ gradientmodulation of SR Ca2+ stores andcell responsiveness. The repetitive stimulation data suggest that theNCX may be important during tonic activation of arterial myocytes.

  相似文献   

4.
Depletion of Ca2+ stores inthe sarcoplasmic reticulum (SR) activates extracellularCa2+ influx via capacitativeCa2+ entry (CCE). Here, CCE levelsin proliferating and growth-arrested human pulmonary artery smoothmuscle cells (PASMCs) were compared by digital imaging fluorescencemicroscopy. Resting cytosolic freeCa2+ concentration([Ca2+]cyt)in proliferating PASMCs was twofold higher than that in growth-arrestedcells. Cyclopiazonic acid (CPA; 10 µM), which inhibits SRCa2+-ATPase and depletes inositol1,4,5-trisphosphate-sensitiveCa2+ stores, transiently increased[Ca2+]cytin the absence of extracellularCa2+. The addition of 1.8 mMCa2+ to the extracellular solutionin the presence of CPA induced large increases in[Ca2+]cyt,indicative of CCE. The CPA-induced SRCa2+ release in proliferatingPASMCs was twofold higher than that in growth-arrested cells, whereasthe transient rise of[Ca2+]cytdue to CCE was fivefold greater in proliferating cells. CCE wasinsensitive to nifedipine but was significantly inhibited by 50 mMK+, which reduces the drivingforce for Ca2+ influx, and by 0.5 mM Ni2+, a putative blocker ofstore-operated Ca2+ channels.These data show that augmented CCE is associated with proliferation ofhuman PASMCs and may be involved in stimulating and maintaining cell growth.

  相似文献   

5.
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+ ([Ca2+]m), which fluctuates in coordination with intracellular Ca2+ ([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]i mobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]i mobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]i response to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]i mobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+ stores. Furthermore, PUFA-mediated [Ca2+]i mobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]m with X-rhod-1 and 45Ca2+ indicate that PUFA induce Ca2+ efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, blocks PUFA-induced Ca2+ efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+ release from mitochondria, possibly via the Ca2+ uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]i mobilization in NT2 cells. arachidonic acid; mitochondrial Ca2+ uniporter; G protein-coupled receptor; IP3 receptor  相似文献   

6.
Although it iswell known that progesterone alters uterine contractility and plays animportant role in maintenance of pregnancy, the biochemical mechanismsby which progesterone alters uterine contractility in human gestationare less clear. In this investigation we sought to identifyprogesterone-induced adaptations in human myometrial smooth musclecells that may alter Ca2+signaling in response to contractile agents. Cells were treated withvehicle or the progesterone analog medroxyprogesterone acetate (MPA)for 5 days, and intracellular freeCa2+ concentration([Ca2+]i)was quantified after treatment with oxytocin (OX) or endothelin (ET)-1.OX- and ET-1-induced increases in[Ca2+]iwere significantly attenuated in cells pretreated with MPA in adose-dependent manner. Progesterone receptor antagonists prevented theattenuated Ca2+ transients inducedby MPA. ETA andETB receptor subtypes were expressed in myometrial cells, and treatment with MPA resulted insignificant downregulation of ETAand ETB receptor binding. MPA didnot alter ionomycin-stimulated increases in[Ca2+]iand had no effect on inositol trisphosphate-dependent or -independent release of Ca2+ from internalCa2+ stores. We conclude thatadaptations of Ca2+ homeostasis inmyometrial cells during pregnancy may include progesterone-inducedmodification of receptor-mediated increases in[Ca2+]i.  相似文献   

7.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

8.
The effects ofendurance run training onNa+-dependentCa2+ regulation in rat leftventricular myocytes were examined. Myocytes were isolated fromsedentary and trained rats and loaded with fura 2. Contractile dynamicsand fluorescence ratio transients were recorded during electricalpacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29°C.Resting and peak cytosolic Ca2+concentration([Ca2+]c)did not change with exercise training. However, resting and peak[Ca2+]cincreased significantly in both groups during 5 min of continuous pacing, although diastolic[Ca2+]cin the trained group was less susceptible to this elevation ofintracellular Ca2+. Run trainingalso significantly reduced the rate of[Ca2+]cdecay during relaxation. Myocytes were then exposed to 10 mM caffeinein the absence of external Na+ orCa2+ to trigger sarcoplasmicreticular Ca2+ release and tosuppress cellular Ca2+ efflux.This maneuver elicited an elevated steady-state[Ca2+]c.External Na+ was then added, andthe rate of[Ca2+]cclearance was determined. Run training significantly reduced the rateof Na+-dependent clearance of[Ca2+]cduring the caffeine-induced contractures. These data demonstrate thatthe removal of cytosolic Ca2+ wasdepressed with exercise training under these experimental conditionsand may be specifically reflective of a training-induced decrease inthe rate of cytosolic Ca2+ removalviaNa+/Ca2+exchange and/or in the amount ofCa2+ moved across the sarcolemmaduring a contraction.  相似文献   

9.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

10.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a trigger for pulmonary vasoconstriction and a stimulus for PASMC proliferation and migration. Multiple mechanisms are involved in regulating [Ca2+]cyt in human PASMC. The resting [Ca2+]cyt and Ca2+ entry are both increased in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH), which is believed to be a critical mechanism for sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in these patients. Here we report that protein expression of NCX1, an NCX family member of Na+/Ca2+ exchanger proteins is upregulated in PASMC from IPAH patients compared with PASMC from normal subjects and patients with other cardiopulmonary diseases. The Na+/Ca2+ exchanger operates in a forward (Ca2+ exit) and reverse (Ca2+ entry) mode. By activating the reverse mode of Na+/Ca2+ exchange, removal of extracellular Na+ caused a rapid increase in [Ca2+]cyt, which was significantly enhanced in IPAH PASMC compared with normal PASMC. Furthermore, passive depletion of intracellular Ca2+ stores using cyclopiazonic acid (10 µM) not only caused a rise in [Ca2+]cyt due to Ca2+ influx through store-operated Ca2+ channels but also mediated a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. The upregulated NCX1 in IPAH PASMC led to an enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange, but did not accelerate Ca2+ extrusion via the forward mode of Na+/Ca2+ exchange. These observations indicate that the upregulated NCX1 and enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange are an additional mechanism responsible for the elevated [Ca2+]cyt in PASMC from IPAH patients. transient receptor potential channel; reverse and forward mode; proliferation  相似文献   

11.
The role of theNa+/Ca2+exchanger in intracellular Ca2+regulation was investigated in freshly dissociated catfish retinalhorizontal cells (HC).Ca2+-permeable glutamate receptorsand L-type Ca2+ channels as wellas inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitiveintracellular Ca2+ stores regulateintracellular Ca2+ in these cells.We used the Ca2+-sensitive dyefluo 3 to measure changes in intracellularCa2+ concentration([Ca2+]i)under conditions in whichNa+/Ca2+exchange was altered. In addition, the role of theNa+/Ca2+exchanger in the refilling of the caffeine-sensitiveCa2+ store followingcaffeine-stimulated Ca2+ releasewas assessed. Brief applications of caffeine (1-10 s) producedrapid and transient changes in[Ca2+]i.Repeated applications of caffeine produced smallerCa2+ transients until no furtherCa2+ was released. Store refillingoccurred within 1-2 min and required extracellularCa2+. Ouabain-induced increases inintracellular Na+ concentration([Na+]i)increased both basal free[Ca2+]iand caffeine-stimulated Ca2+release. Reduction of external Na+concentration([Na+]o)further and reversibly increased[Ca2+]iin ouabain-treated HC. This effect was not abolished by the Ca2+ channel blocker nifedipine,suggesting that increases in[Na+]ipromote net extracellular Ca2+influx through aNa+/Ca2+exchanger. Moreover, when[Na+]owas replaced by Li+, caffeine didnot stimulate release of Ca2+ fromthe caffeine-sensitive store afterCa2+ depletion. TheNa+/Ca2+exchanger inhibitor 2',4'-dimethylbenzamil significantlyreduced the caffeine-evoked Ca2+response 1 and 2 min after store depletion.

  相似文献   

12.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

13.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

14.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

15.
We determined the effect of aromatic aminoacid stimulation of the human extracellular Ca2+-sensingreceptor (CaR) on intracellular Ca2+ concentration([Ca2+]i) in single HEK-293 cells. Additionof L-phenylalanine or L-tryptophan (at 5 mM)induced [Ca2+]i oscillations from a restingstate that was quiescent at 1.8 mM extracellular Ca2+concentration ([Ca2+]e). Each[Ca2+]i peak returned to baseline values, andthe average oscillation frequency was ~1 min1 at37°C. Oscillations were not induced or sustained if the[Ca2+]e was reduced to 0.5 mM, even in thecontinued presence of amino acid. Average oscillation frequency inresponse to an increase in [Ca2+]e (from 1.8 to 2.5-5 mM) was much higher (~4 min1) than thatinduced by aromatic amino acids. Oscillations in response to[Ca2+]e were sinusoidal whereas those inducedby amino acids were transient. Thus both amino acids andCa2+, acting through the same CaR, produce oscillatoryincreases in [Ca2+]i, but the resultantoscillation pattern and frequency allow the cell to discriminate whichagonist is bound to the receptor.

  相似文献   

16.
The subcellular spatial and temporal organization ofagonist-induced Ca2+ signals wasinvestigated in single cultured vascular endothelial cells.Extracellular application of ATP initiated a rapid increase ofintracellular Ca2+ concentration([Ca2+]i)in peripheral cytoplasmic processes from where activation propagated asa[Ca2+]iwave toward the central regions of the cell. The average propagation velocity of the[Ca2+]iwave in the peripheral processes was 20-60 µm/s, whereas in thecentral region the wave propagated at <10 µm/s. The time course ofthe recovery of[Ca2+]idepended on the cell geometry. In the peripheral processes (i.e.,regions with a high surface-to-volume ratio)[Ca2+]ideclined monotonically, whereas in the central region[Ca2+]idecreased in an oscillatory fashion. Propagating[Ca2+]iwaves were preceded by small, highly localized[Ca2+]itransients originating from 1- to 3-µm-wide regions. The average amplitude of these elementary events ofCa2+ release was 23 nM, and theunderlying flux of Ca2+ amountedto ~1-2 × 1018mol/s or ~0.3 pA, consistent with aCa2+ flux through a single orsmall number of endoplasmic reticulum Ca2+-release channels.

  相似文献   

17.
In muscle, ATP is required for the powerstroke of the myosin head, the detachment of actin and myosin filaments, and the reuptake of Ca2+ into the sarcoplasmic reticulum. During contraction-relaxation, large amounts of ATP are consumed at the sites of action of the myosin-ATPase and sarcoplasmic reticulum Ca2+-ATPase. The present study addresses the consequences of a reduction in mitochondrial ATP production capacity on sarcoplasmic Ca2+ handling. To this end, myotubes were cultured from patient quadriceps with a biochemically defined decrease in the maximal rate of mitochondrial ATP production and were loaded with indo 1 for imaging of sarcoplasmic Ca2+ changes in real time by confocal microscopy. Myotubes were field-stimulated with 10-ms pulses of 16 V to evoke transient rises in sarcoplasmic Ca2+ concentration ([Ca2+]S). Three single pulses, two pulse trains (1 Hz), and one single pulse were applied in succession to mimic changing workloads. Control myotubes displayed [Ca2+]S transients with an amplitude that was independent of the strength of the stimulus. Intriguingly, the rate of sarcoplasmic Ca2+ removal (CRR) was significantly upregulated during the second and subsequent transients. In myotubes with a reduced mitochondrial ATP production capacity, the amplitude of the [Ca2+]S transients was markedly increased at higher stimulus intensities. Moreover, upregulation of the CRR was significantly decreased compared with control. Taken together, these results are in good agreement with a tight coupling between mitochondrial ATP production and sarcoplasmic Ca2+ handling. Moreover, they support the existence of a relatively long-lasting mitochondrial memory for sarcoplasmic [Ca2+] rises. This memory, which manifested itself as an increase in CRR upon recurrent stimulation, was impaired in patient myotubes with a reduced mitochondrial ATP production capacity. sarcoplasmic Ca2+ removal; video-rate imaging; indo 1; electrical stimulation; mitochondrial memory  相似文献   

18.
Transfected Chinese hamster ovary cells stably expressing thebovine cardiacNa+/Ca2+exchanger (CK1.4 cells) were used to determine the range of cytosolic Ca2+ concentrations([Ca2+]i)that activateNa+/Ca2+exchange activity. Ba2+ influx wasmeasured in fura 2-loaded, ionomycin-treated cells under conditions inwhich the intracellular Na+concentration was clamped with gramicidin at ~20 mM.[Ca2+]iwas varied by preincubating ionomycin-treated cells with either theacetoxymethyl ester of EGTA or medium containing 0-1 mM added CaCl2. The rate ofBa2+ influx increased in asaturable manner with[Ca2+]i,with the half-maximal activation value of 44 nM and a Hill coefficientof 1.6. When identical experiments were carried out with cellsexpressing a Ca2+-insensitivemutant of the exchanger, Ba2+influx did not vary with[Ca2+]i.The concentration for activation of exchange activity was similar tothat reported for whole cardiac myocytes but approximately an order ofmagnitude lower than that reported for excised, giant patches. Thereason for the difference in Ca2+regulation between whole cells and membrane patches is unknown.

  相似文献   

19.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

20.
The effects of run endurance training and fura 2 loading on the contractile function andCa2+ regulation of rat leftventricular myocytes were examined. In myocytes not loaded with fura 2, the maximal extent of myocyte shortening was reduced with trainingunder our pacing conditions [0.5 Hz at 2.0 and 0.75 mM externalCa2+ concentration([Ca2+]o)], although training had noeffect on the temporal characteristics. The "light" loading ofmyocytes with fura 2 markedly suppressed (~50%) maximal shorteningin the sedentary and trained groups, although the temporalcharacteristics of myocyte shortening were significantly prolonged inthe trained group. No discernible differences in the dynamiccharacteristics of the intracellularCa2+ concentration([Ca2+]) transientwere detected at 2.0 mM[Ca2+]o, althoughpeak [Ca2+] and rateof [Ca2+] rise duringcaffeine contracture were greater in the trained state at 0.75 mM[Ca2+]o. We concludethat training induced a diminished myocyte contractile function underthe conditions studied here and a more effective coupling of inwardCa2+ current to sarcoplasmicreticulum Ca2+ release at low[Ca2+]o,and that fura 2 and its loading vehicle DMSO significantly alter theintrinsic characteristics of myocyte contractile function andCa2+ regulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号