首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices   总被引:1,自引:0,他引:1  
to compare the storage and release of endogenous GABA, of [3H]GABA formed endogenously from glutamate, and of exogenous [14C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4-3H]1-glutamate and 0.5 microCi/ml [U-14C]GABA and then were superfused in the presence or absence of Ca+ with either 50 mM K+ or 50 microM veratridine. Endogenous GABA was determined by high performance liquid chromatography which separated labeled GABA from its precursors and metabolites. Exogenous [14C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [3H]GABA stayed constant over a 48 min period. In the presence of Ca+ 50 mM K+ and in the presence or absence of Ca2+ veratridine released exogenous [14C]GABA more rapidly than endogenous or endogenously formed [3H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [14C]GABA was three times, while that of endogenously formed [3H]GABA was only 50% higher than that in the slices. There was an excess of endogenous GABA content following superfusion with 50 mM K+ and Ca2+, which did not occur in the absence of Ca2+ or after veratridine. The observation that endogenous GABA and [3H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [3H] glutamate can enter a glutamate pool that normally serves as precursor of GABA.  相似文献   

2.
In the present study, GABA was shown to induce a necrotic neuronal death in cultured striatal neurones from mouse embryos. This effect did not depend on the activation of GABA(A), GABA(B) or GABA(C) receptors as it was neither antagonized by bicuculline, saclofen or picrotoxin, respectively, nor reproduced by the GABA receptor agonists, muscimol and baclofen. Excluding the participation of glutamate, GABA neurotoxicity persisted in the presence of either the antagonists of ionotropic and metabotropic glutamate receptors or glutamate pyruvate transaminase, which induces an immediate catabolism of glutamate. A GABA transport-associated process is involved in GABA neurotoxicity as nipecotic acid and NO 711, two inhibitors of the high-affinity neuronal GABA transporters (GAT-1, in particular), completely prevented the neurotoxic effect of GABA. The activation of a subset of G proteins is also implicated in the GABA transport-mediated neuronal death as GABA neurotoxicity was completely suppressed when striatal neurones were pre-treated with pertussis toxin. Further demonstrating the specificity of this neurotoxic process, GABA-induced neurotoxicity was not observed in cortical neurones which, in contrast to striatal neurones, are largely represented by glutamatergic neurones. In conclusion, our study suggests that glutamate is not the sole neurotransmitter that can be responsible for brain damage and that GABA neurotoxicity involves both GABA transport and G protein transduction pathways.  相似文献   

3.
Effects of taurine and THIP were studied on the development of cultured cerebellar granule cells with regard to GABA receptor expression and morphological development. Culturing in the presence of taurine or THIP led to the formation of low affinity GABA receptors as revealed from Scatchard analysis of [3H]GABA binding. This formation of receptors was susceptible to inhibition upon culturing in the simultaneous presence of taurine and bicuculline demonstrating the involvement of the high affinity GABA receptors which are present on the cells regardless of the culture condition. Superfusion experiments on cells cultured under the different conditions demonstrated that the low affinity GABA receptors expressed after culturing in the presence of THIP or taurine mediated an inhibition by GABA of evoked transmitter release from the granule cells. Cells cultured in either plain culture media or in the presence of taurine were indistinguishable with respect to the number of neurite extending cells observed after 4 days in culture. In contrast, culturing in the presence of THIP increased the number of neurite extending cells by 8% relative to the controls.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

4.
GABA and glutamate receptors are expressed in immature "silent" CA1 pyramidal neurons prior to synapse formation, but their function is unknown. We now report the presence of tonic, spontaneous, and evoked currents in embryonic and neonatal CA1 neurons mediated primarily by the activation of GABA(A) receptors. These currents are mediated by a nonconventional release of transmitters, as they persist in the presence of calcium channel blockers or botulinium toxin and are observed in Munc18-1-deficient mice in which vesicular release is abolished. This paracrine communication is modulated by glutamate but not GABA transporters, which do not operate during this period of life. Thus, a Ca(2+)- and SNARE-independent release of transmitters underlies a paracrine mode of communication before synapse formation.  相似文献   

5.
Thyroid hormones (THs) have critical roles in brain development and normal brain function in vertebrates. Clinical evidence suggests that some human nervous disorders involving GABA(gamma-aminobutyric acid)-ergic systems are related to thyroid dysfunction (i.e. hyperthyroidism or hypothyroidism). There is experimental evidence from in vivo and in vitro studies on rats and mice indicating that THs have effects on multiple components of the GABA system. These include effects on enzyme activities responsible for synthesis and degradation of GABA, levels of glutamate and GABA, GABA release and reuptake, and GABA(A) receptor expression and function. In developing brain, hypothyroidism generally decreases enzyme activities and GABA levels whereas in adult brain, hypothyroidism generally increases enzyme activities and GABA levels. Hyperthyroidism does not always have the opposite effect. In vitro studies on adult brain have shown that THs enhance GABA release and inhibit GABA-reuptake by rapid, extranuclear actions, suggesting that presence of THs in the synapse could prolong the action of GABA after release. There are conflicting results on effects of long term changes in TH levels on GABA reuptake. Increasing and decreasing circulating TH levels experimentally in vivo alter density of GABA(A) receptor-binding sites for GABA and benzodiazepines in brain, but results vary from study to study, which may reflect important regional differences in the brain. There is substantial evidence that THs also have an extranuclear effect to inhibit GABA-stimulated Cl(-) currents by a non-competitive mechanism in vitro. The thyroid gland exhibits GABA transport mechanisms as well as enzyme activities for GABA synthesis and degradation, all of which are sensitive to thyroidal state. In rats and humans, GABA inhibits thyroid stimulating hormone (TSH) release from the pituitary, possibly by action directly on the pituitary or on hypothalamic thyrotropin-releasing hormone neurons. In mice, GABA inhibits TSH-stimulated TH release from the thyroid gland. Taken together, these studies provide strong support for the hypothesis that there is reciprocal regulation of the thyroid and GABA systems in vertebrates.  相似文献   

6.
The influence of phosphatidylserine (PS) on the isoniazid-induced convulsions has been studied in mice. Sonicated dispersions of this phospholipid given intravenously do not show anticonvulsant activity but they do so when -aminobutyric acid (GABA) is simultaneously injected. GABA alone is inactive. The synergism between PS and GABA is influenced by the structure of the phospholipid liposomes. In contrast to multilamellar vesicles, oligolamellar vesicles are active. Under these conditions the effect shows head group specificity, in that the neutral phosphatidylcholine (PC) or the acidic phosphatidylinositol (PI) are inactive, either in the presence or in the absence of GABA. Lysophosphatidylserine (lysoPS), the deacylated PS derivative, shows increased efficacy as an isoniazid antagonist in the presence of GABA, and has anticonvulsant activity also in the absence of GABA. Other lysophospholipids are inactive. It is suggested that PS, after its metabolic conversion to lysoPS, enhances the anticonvulsant effect of GABA.  相似文献   

7.
8.
35S-t-Butylbicyclophosphorothionate (35S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25 degrees C, in 250 mM NaCl, specific binding of 35S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. 35S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase 3H-GABA binding. Pharmacological studies show that 35S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of 35S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of 35S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that 35S-TBPS binds at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.  相似文献   

9.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

10.
Recently established standardized protocols for collection, handling, and storage of CSF for measurement of gamma-aminobutyric acid (GABA) have proven valuable in the characterization of various CNS disorders. In response to two recent reports which may have an impact on certain widely used protocols, we have, using the confirmed ion-exchange/fluorometric procedure, systematically evaluated the effects of deproteinization with various concentrations of sulfosalicylic acid (SSA) ranging from 0 to 10% (100 mg/ml), as well as the effects of freeze/thaw (F/T) on CSF GABA levels. Results of F/T studies documented that levels are stable to freezing and thawing. Acid deproteinization studies revealed the presence of an equilibrium between strictly free GABA, demonstrable only in acid-free CSF, and a very loosely bound form of GABA, fully demonstrable only in CSF deproteinized with concentrations of SSA above 1% (10 mg/ml). The relationship between GABA concentrations in undeproteinized and acid-deproteinized CSF revealed a highly significant (p less than .001) correlation, suggesting that alterations of central GABAergic activity would be reflected by either the level of strictly free GABA or free plus loosely bound GABA. This hypothesis was upheld in studies of patients with Parkinson's disease (PD) and Huntington's disease (HD), two neurologic disorders in which dysfunctions of the GABA system have been implicated. Results indicated that CSF GABA levels are significantly reduced in both PD and HD patients compared with neurologically normal controls, whether the measurement is of free GABA or free plus loosely bound GABA. Thus, we conclude that the level of strictly free GABA is stable to freezing and thawing and can only be accurately determined in nonacidified CSF; however, existing protocols employing deproteinization in 5% SSA yield data that provide an equally good reflection of central GABAergic transmission.  相似文献   

11.
Iontophoretic application of GABA to voltage-clamped locust muscle fibres has demonstrated the presence of both extrajunctional and junctional GABA receptors. Extrajunctional GABA receptors are distinct from extrajunctional glutamate receptors which also occur in these muscle fibres. Inward GABA currents are nonlinearly dependent on membrane potential. Analysis of membrane current noise produced by iontophoretic GABA application shows that for junctional and extrajunctional GABA receptors the mean channel lifetime is 3-4 ms and the single-channel conductance is approximately 22 pS at - 80 mV (T = 21 degrees C). The mean lifetime as previously demonstrated for glutamate-sensitive excitatory channels in locust muscle fibres.  相似文献   

12.
Abstract: The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p -diazobenzenesulfonic acid (DSA), tetrani-tromethane (TNM), and N -acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABAA site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pre-treatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABAA receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N -bromosuccinimide and N -acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.  相似文献   

13.
Glycine and GABA are likely co-transmitters in the spinal cord. Their possible interactions in presynaptic terminals have, however, not been investigated. We studied the effects of glycine on GABA release using superfused mouse spinal cord synaptosomes. Glycine concentration dependently elicited [(3)H]GABA release which was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was Na(+) dependent and sensitive to the glycine uptake blocker glycyldodecylamide. The glycine effect was external Ca(2+) independent, but was reduced when intraterminal Ca(2+) was chelated with 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid or depleted with thapsigargin, or when vesicular storage was impaired with bafilomycin. Glycine-induced [(3)H]GABA release was prevented, in part, by blocking GABA transport. The glycine effect was halved by sarcosine, a GLYT1 substrate/inhibitor, or by amoxapine, a GLYT2 blocker, and abolished by a mixture of the two. The sensitivity to sarcosine, used as a transporter inhibitor or substrate, persisted in synaptosomes prelabelled with [(3)H]GABA in the presence of beta-alanine, excluding major gliasome involvement. To conclude, in mice spinal cord, transporters for glycine (both GLYT1 and GLYT2) and for GABA coexist on the same axon terminals. Activation of the glycine transporters elicits GABA release, partly by internal Ca(2+)-dependent exocytosis and partly by transporter reversal.  相似文献   

14.
The effect of gamma-aminobutyric acid (GABA) on the bull sperm acrosome reaction was evaluated, and the interaction of progesterone, a physiologic inducer of the acrosome reaction, with the GABA receptor was explored. The acrosome reaction was stimulated by GABA in a dose-dependent manner. This effect was inhibited completely by bicuculline, a GABA A receptor antagonist, but GABA B and C receptor antagonists had no effect. Accordingly, muscimol, a GABA A receptor agonist, stimulated the acrosome reaction to the same extent as GABA, whereas baclofen (GABA B receptor agonist) and CACA (GABA C receptor agonist), had no effect. Preincubation with progesterone followed by the addition of GABA resulted in a significant increase in the percentage of acrosome reacted spermatozoa compared with progesterone or GABA alone. Taking into account that this increase was less than a simple addition of effects, it might be suggested that GABA and progesterone act through the same receptor and/or use the same mechanism of action. To test this hypothesis, the abilities of GABA and progesterone to induce acrosome reaction were tested in the presence of bicuculline, which suppressed both stimulatory effects. Given that the GABA A receptor is linked to the Cl(-) channel, we tested whether picrotoxin, a blocker of this channel, could modulate the effects of progesterone or GABA. Cl(-) channel blocker picrotoxin dramatically reduced the GABA and progesterone-initiated AR. In conclusion: GABA and progesterone stimulate the acrosome reaction in bull spermatozoa acting through a classical GABA A receptor. The mechanism of action requires the functional integrity of the Ca(2+) Cl(-) channel.  相似文献   

15.
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.  相似文献   

16.
The gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in vertebrate CNS. At GABAergic synapses, a high-affinity transporter exists, which is responsible for GABA reuptake and release during neurotransmission. GABA transporter activity depends on the phosphorylation/dephosphorylation state, being modulated by Ca(2+)/calmodulin-dependent protein phosphatase 2B (calcineurin). Aluminium is known to interfere with the Ca(2+)/calmodulin signalling pathway. In this work, we investigate the action of aluminium on GABA translocation mediated by the high-affinity transporter, using synaptic plasma membrane (SPM) vesicles and synaptosomes isolated from brain cortex. Aluminium completely relieved Ca(2+) downregulation of GABA transporter, when mediating uptake or release. Accordingly, aluminium inhibited Ca(2+)/calmodulin-dependent calcineurin activity present in SPM, in a concentration-dependent manner. The deleterious action of aluminium on the modulation of GABA transport was ascertained by comparative analysis of the aluminium effect on GABA uptake and release, under conditions favouring SPM dephosphorylation (presence of intracellular micromolar Ca(2+)) or phosphorylation (absence of Ca(2+) and/or presence of W-7, a selective calmodulin antagonist). In conclusion, aluminium-induced relief of Ca(2+) modulatory action on GABA transporter may contribute significantly to modify GABAergic signalling during neurotoxic events in response to aluminium exposure.  相似文献   

17.
Abstract: Most studies on γ-aminobutyric acid (GABA) release from nervous tissue have been conducted using radiolabelled GABA in the presence of aminooxyacetic acid (AOAA) to inhibit GABA: 2-oxoglutarate aminotransferase (GABA-T) to prevent conversion of labelled GABA to labeled catabolites. Here we present data showing that even in the presence of 10 μM-AOAA the spontaneous release of tritium from rat cortical synaptosomes prelabelled with 2,3-[3H]GABA is mainly in the form of tritiated water but that the increase in tritium release in the presence of unlabelled GABA or high potassium-ion concentrations is in the form of authentic [3H]GABA. Interpretation of results should take these facts into account.  相似文献   

18.
Cultures of dissociated cerebella from 7-day-old mice were maintained in vitro for 1-13 days. GABA biosynthesis and degradation were studied during development in culture and pharmacological agents were used to identify the enzymes involved. The amount of GABA increased, whereas that of glutamate was unchanged during the first 5 days and both decreased thereafter. The presence of aminooxyacetic acid (AOAA, 10 microM) which inhibits transaminases and other pyridoxal phosphate dependent enzymes including GABA-transaminase (GABA-T), in the culture medium caused an increase in the intracellular amount of GABA and a decrease in glutamate. The GABA content was also increased following exposure to the specific GABA-T inhibitor gamma-vinyl GABA. From day 6 in culture (day 4 when cultured in the presence of AOAA) GABA levels in the medium were increased compared to that in medium from 1-day-old cultures. Synthesis of GABA during the first 3 days was demonstrated by the finding that incubation with either [1-(13)C]glucose or [U-(13)C]glutamine led to formation of labeled GABA. Synthesis of GABA after 1 week in culture, when the enzymatic machinery is considered to be at a more differentiated level, was shown by labeling from [U-(13)C]glutamine added on day 7. Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 microM AOAA, GABA synthesis from [U-(13)C]glutamine was not affected, indicating that transaminases are not involved in GABA synthesis and thus excluding the putrescine pathway. At a concentration of 5 mM AOAA GABA labeling was, however, abolished, showing that glutamate decarboxylase, which is inhibited at this level of AOAA, is responsible for GABA synthesis in the cerebellar cultures. In conclusion, the present study shows that GABA synthesis is taking place via GAD in a subpopulation of the cerebellar neurons, throughout the culture period.  相似文献   

19.
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors.  相似文献   

20.
In the past few years, several studies have demonstrated in the rat subcommissural organ the presence of nerve endings and modified ependymocytes showing an uptake of [3H]GABA. The present work was performed to demonstrate in this cerebral zone the possibility of a GABA synthesis by the immunohistochemical localization of glutamate decarboxylase (GAD). GAD-positive reaction was detected with unlabelled antibody-enzyme peroxidase anti-peroxidase. Some nerve terminals containing either clear round vesicles, or sometimes clear round vesicles and some large granular vesicles, exhibited a positive staining. These terminals could belong to GABAergic inputs in the subcommissural organ. The few reactive terminals containing some granular vesicles could be related to the serotoninergic input as suggested previously (Gamrani et al., 1981). Several ependymocytes of this structure contained GAD-like positive reaction; these cells are also capable of taking up [3H]GABA (Gamrani et al., 1981) and present neuronal properties with regard to GABA. However, the presence in their cytoplasm of enolase, a specific glial marker, related them to glial elements. The presence of GABA in these ependymocytes suggests a modulating function of GABA on the secretory activity of the subcommissural organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号