首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The genomes of Desulfovibrio gigas and D. vulgaris   总被引:8,自引:0,他引:8  
Two-dimensional electrophoresis of sequential double-restriction digests showed that the genome of Desulfovibrio gigas compromised 1.63 x 10(6) bp (1.09 x 10(9) Dal) of DNA; an ammonia-limited chemostat population possessed an average of nine genomes per cell and a multiplying batch culture possessed approximately 17 genomes per cell. The genome size of D. vulgaris (Hildenborough) was 1.72 x 10(6) bp (1.14 x 10(9) Dal); a population from an ammonia-limited batch culture contained four genomes per cell. Control digestions and analyses with Escherichia coli GM4 agreed reasonably with published values: a genome size of 3.95 x 10(6) bp and approximately two genomes per cell from a stationary batch culture in glucose minimal medium. Desulfovibrio gigas carried two plasmids of approximately 70 MDal (1.05 x 10(5) bp) and approximately 40 MDal (6 x 10(4) bp); D. vulgaris (Hildenborough) contained one of approximately 130 MDal (1.95 x 10(5) bp). Single plasmids were also detected in a second strain of D. vulgaris and in strain Berre sol of D. desulfuricans but not in 10 other desulfovibrios including representatives of D. desulfuricans, D. vulgaris, D. salexigens and D. africanus.  相似文献   

2.
It has been proposed that the genome of herpes simplex virus type 1 (HSV-1) consists of two internal unique sequences, S and L, bounded by two sets of redundant sequences (P. Sheldrick and N. Berthelot, 1974). In this arrangement, terminal sequences (TRs and TRl) are repeated in an internal inverted form (IRs and IRl) and delimit S and L. Furthermore, a body of evidence has accumulated that suggests that S and L themselves are inverted, giving rise to four related forms of the HSV genome. In this study the ordering of restruction endonuclease fragments of HSV-1 DNA for physical maps has been studied using molecular hybridization techniques and the cleavage of isolated restriction endonuclease fragments with further restriction endonucleases. Physical maps for the fragments produced by Hind III, Hpa-1, and X. bad have been constructed for the four related forms of the HSV-1 genome. TRs and IRs were found to be between 3.5 x 10(6) and 4.5 x 10(6) daltons, TRl and IRl about 6 x 10(6) daltons, S about 8 x 10(6) to 9 x 10(6) daltons, and L about 6.8 x 10(6) daltons.  相似文献   

3.
Digestion of purified reovirus type 3 with chymotrypsin degrades 70% of the viral protein and converts the virions to subviral particles (SVP). The SVP contain 3 of the 6 viral structural proteins and all 10 double-stranded ribonucleic acid (RNA) genome segments but not adenine-rich, single-stranded RNA. An RNA polymerase which is structurally associated with SVP transcribes one strand of each genome segment by a conservative mechanism in vitro. The single-stranded products include large (1.2 x 10(6) daltons), medium (0.7 x 10(6) daltons), and small (0.4 x 10(6) daltons) molecules which hybridize exclusively with the corresponding genome segments. The enzyme obtained by heating virions at 60 C synthesizes similar products. Kinetic and pulse-chase studies indicate that the different-sized products are synthesized simultaneously but at rates which are in the order: small > medium > large.  相似文献   

4.
5.
Sedimentation analysis and intensity fluctuation spectroscopy have been used in conjunction with the Svedberg equation to determine the particle molecular weights of Rous sarcoma virus (Prague strain) and avian myeloblastosis virus (BAI strain). The molecular weights of these two viruses are (294 +/- 20) x 10(6) and (256 +/- 18) x 10(6), respectively. Values for the molecular weight of the RNA contained in each particle have been calculated as (5.58 +/- 0.5) x 10(6) and (5.88 +/- 0.5) x 10(6). Since the proportion of the viral RNA represented by 4 to 7S low-molecular-weight material is known, the molecular weight of the 60 to 70S genomes may be calculated to lie in the range (3.8 +/- 0.3 to 4.8 +/- 0.4) x 10(6) for both particles. These estimates for the molecular weight of the 60 to 70S genome are much lower than previous estimates and fall within the range of current estimates of the size of a single 35S subunit. The implications of this finding are discussed in terms of current theories for the structure of the genome of RNA tumor viruses.  相似文献   

6.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

7.
8.
A restriction endonuclease from Haemophilus influenzae (Hind III) specifically cleaved vaccinia DNA into 14 fragments. The molecular weights of these fragments were determined by gel electrophoresis and ranged from 0.5 x 10(6) to 30 x 10(6). Hind III digestion of the DNA from the WR and CV-1 strains of vaccinia revealed a small molecular difference in one of the resulting fragments. The average molecular weight of the entire vaccinia genome was calculated to be 125 x 10(6).  相似文献   

9.
The DNA genome of human cytomegalovirus (HCMV) strain AD169 is 158 x 10(6) Mr. Cleavage of the HCMV DNA with the restriction endonuclease EcoRI yields 35 major fragments ranging in size from 0.54 x 10(6) Mr. We have constructed a cloned library of the EcoRI fragments of this strain of HCMV, using the plasmid pACYC184 and the recipient bacterium Escherichia coli strain HB101 RecA-. The viral origin of the cloned inserts was determined by hybridization to viral DNA. The fragments were characterized further by digestion with other restriction enzymes. Several clones were obtained which contained sequences spanning the junction between the long (L) and short (S) components of the viral DNA sequences. These clones differed in molecular weight by multiples of 0.3 x 10(6) to 0.4 x 10(6) Mr. The variability found in the clones was also reflected in the genome. Each clone containing a junction sequence hybridized to a series of bands on Southern filters of EcoRI-digested HCMV DNA. This "ladder effect" provided evidence for a region of heterogeneity within the L-S junction.  相似文献   

10.
The DNA of herpesvirus pan, a primate B-lymphotropic herpesvirus, shares about 40% well-conserved sequence relatedness with Epstein-Barr virus (EBV) and herpesvirus papio DNAs. Labeled cloned fragments from the EBV recombinant DNA library were cross hybridized to blots of EcoRI, XbaI, and BamHI restriction endonuclease fragments of herpesvirus pan DNA to identify and map homologous sequences in the herpesvirus pan genome. Regions of colinear homology were demonstrated between 6 x 10(6) daltons and 108 x 10(6) daltons in the DNAs. The structural organization of herpesvirus pan DNA was similar to the format of Epstein-Barr virus and herpesvirus papio DNAs. The DNA consists of two domains of largely unique sequence complexity, a segment US of 9 x 10(6) daltons and a segment UL of 88 x 10(6) daltons. US and UL are separated by a variable number of tandem repetitions of a sequence IR (2 x 10(6) daltons). There was homology between DNA which mapped at 26 to 28 x 10(6) daltons and 93 to 95 x 10(6) daltons in UL. The terminal reiteration component, TR, of herpesvirus pan DNA and sequences which mapped to the left of 6 x 10(6) daltons and to the right of 108 x 10(6) daltons had no detectable homology with the corresponding regions of Epstein-Barr virus DNA.  相似文献   

11.
12.
Cleavage of varicella-zoster virus DNA with the restriction endonucleases PstI, XbaI, and BglII resulted in 18, 22, and 20 fragments, respectively. Based on the molecular weights and molarities of these fragments, a molecular weight of 84 x 10(6) could be calculated for the varicella-zoster virus genome. In both the XbaI and the BglII patterns, four 0.5 M fragments were identified. The arrangement of the fragments was determined by molecular hybridization techniques, and the terminal fragments were identified by lambda exonuclease digestion. The 0.5 M fragments, of which two were located at the same terminus of the genome, contained repeated sequences: one terminally and one inverted internally. These results were in agreement with the existence of two equimolar subpopulations of the varicella-zoster virus genome, differing in the relative orientation of a short region of unique sequences. This region was bounded by the repeated sequences. From the molecular weights of the submolar fragments, a maximal molecular weight of 5 x 10(6) for the repeated region and a minimal molecular weight of 3.5 x 10(6) for the short unique sequence could be calculated.  相似文献   

13.
Characterization of Bluetongue Virus Ribonucleic Acid   总被引:19,自引:9,他引:10       下载免费PDF全文
An improved purification procedure yielded bluetongue virus free from any single-stranded ribonucleic acid (RNA) component. Double-stranded RNA obtained from purified virus or isolated from infected cells was fractionated into 5 components by means of sucrose gradient sedimentation analysis, and into 10 components by electrophoresis on polyacrylamide gels. The size of these components vary from 0.5 x 10(6) to 2.8 x 10(6) daltons, with a total molecular weight estimate of about 1.5 x 10(7) for the viral nucleic acid. The denaturation of the genome and separation of the resulting fragments are also discussed.  相似文献   

14.
The genetic complexities of several ribodeoxyviruses were measured by quantitative analysis of unique RNase T1-resistant oligonucleotides from 60-70S viral RNAs. Moloney murine leukemia virus was found to have an RNA complexity of 3.5 x 10(6) daltons, whereas Moloney murine sarcoma virus had a significantly smaller genome size of 2.3 x 10(6). Reticuleondotheliosis and visna virus RNAs had complexities of 3.9 x 10(6), respectively. Analysis of RNase A-resistant oligonucleotides of Rous sarcoma virus RNA gave a complexity of 3.6 x 10(6), similar to that previously obtained with RNase T1-resistant oligonucleotides. Since each of these viruses was found to have a unique sequence genomic complexity near the molecular weight of a single 30-40S viral RNA subunit, it was concluded that ribodeoxyvirus genomes are at least largely polyploid.  相似文献   

15.
Genome size and complexity in Azotobacter chroococcum   总被引:21,自引:0,他引:21  
All of eight strains of Azotobacter chroococcum examined contained between two and six plasmids ranging from 7 to more than 200 MDal in size. Strain MCC-1, a derivative of NCIMB 8003, was cured of various of the four largest of its five plasmids and the phenotypes of the strains compared. all fixed nitrogen and exhibited uptake hydrogenase activity. No differences were observed in carbon source utilization or antibiotic, heavy metal or UV resistance. The genome sizes of two strains of A. chroococcum were determined by two-dimensional electrophoresis. Strain CW8, an isolate from local soil containing two small plasmids of 6 and 6.5 MDAl contained unique DNA sequences equivalent to 1.78 x 10(6) (+/- 20%) bp (1.2 x 10(9) Dal). In strain MDC-1, a derivative of MCC-1, containing a 190 MDal and 7 MDal plasmid, the genome size was 1.94 x 10(6) (+/- 20%) bp. In exponential batch cultures, both contained 20 to 25 genome equivalents per cell. MCD-1 exhibited complex UV kill kinetics with a marked plateau of resistance; CW8 showed a simple response inconsistent with the possibility of organization of its DNA into identical chromosome copies capable of independent segregation.  相似文献   

16.
A small plasmid with a molecular weight of approximately 3.0 x 10(6) and present to the extent of about 16 copies per chromosomal genome equivalent was isolated from Streptococcus mutans strain LM-7.  相似文献   

17.
18.
The RNA of infectious bursal disease virus was reexamined in a detailed analysis. It could be established that its genome consists of two segments of double-stranded RNA. The RNA is RNase resistant and has a sedimentation coefficient of 14S and a buoyant density of 1.62 g/ml. The purine/pyrimidine ratio is nearly 1; the guanine plus cytosine content is 55.3%; the Tm is 95.5 degrees C. The molecular weights of the two double-stranded segments were determined to be 2.2 x 10(6) and 2.5 x 10(6).  相似文献   

19.
20.
The response of the genome of Festuca arundinacea seedlings to changes in the temperature at which they were grown was investigated. Fifteen repeated sequences in the nuclear DNA were isolated and hybridized to the genomic DNA of seedlings grown at 10 degrees C or 30 degrees C. The redundancies of sequences recognized by four probes ( FaA5, FaH8, FaH13 and FaH14), were found to differ significantly in the two DNAs. DNA sequences recognized by FaH8, FaH13 and FaH14 were more represented in the genome of the 30 degrees C-raised seedlings than in the genome of the 10 degrees C-raised seedlings (76.5 x 10(3), 1.9 x 10(3), and 111.8 x 10(3) copies per haploid, 1C genome vs 62.7 x 10(3), 1.3 x 10(3), and 80.8 x 10(3) copies, respectively). In contrast, FaA5-related sequences were more represented in the genome of seedlings grown at the lower temperature (15.5 x 10(3) vs 10.2 x 10(3) copies, respectively). Southern-blot hybridization of these repeats to digested genomic DNA produced patterns which indicated that the probe sequences were part of longer repeated sequences having a limited degree of structural heterogeneity. These patterns were partly different when the probes were hybridized to the DNA from seedlings grown at 10 degrees C or 30 degrees C. In situ hybridization showed that the DNA sequences recognized by each probe were scattered along the length of all the chromosomes, with preferential location of FaA5- and FaH13-related sequences at given, mainly centromeric, regions of certain chromosomes. These findings suggest that redundancy modulations of interspersed repeated sequences allow direct responses of the genome of F. arundinacea to changes in environmental temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号