首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent work is surveyed which leads to the suggestions that the conformation of globular proteins in solution corresponds to a dynamic ensemble of rapidly interconverting spatial structures, that clusters of hydrophobic amino acid side chains have an important role in the architecture of protein molecules, and that mechanistic aspects of protein denaturation can be correlated with internal mobility seen in the native conformation. These conclusions resulted originally from high resolution 1H nuclear magnetic resonance (NMR) studies of aromatic ring mobility, exchange of interior amide protons and thermal denaturation of the basic pancreatic trypsin inhibitor and a group of related proteins. Various new approaches to further characterize proteins in solution have now been taken and preliminary data are presented. These include computer graphics to outline hydrophobic clusters in globular protein structures, high resolution 1H-NMR experiments at variable hydrostatic pressure and 13C-NMR relaxation measurements. At the present early stage of these new investigations it appears that the hydrophobic cluster model for globular proteins is compatible with the data obtained.  相似文献   

2.
Nuclear magnetic resonance was used to measure the hydrogen-deuterium exchange rates for individual interior amide protons in a group of small globular proteins related to the basic pancreatic trypsin inhibitor (BPTI). These proteins include two homologous proteins and seven chemical modifications of BPTI. It was previously shown that the spatial structure of BPTI is preserved in all these related proteins. The exchange rates for corresponding amide protons in the different proteins were found to vary by a factor of as much as 5 X 104. The proton exchange is correlated with the thermal stability of the proteins, i.e. the lower the denaturation temperature, the faster the NH exchange. Further evidence that the exchange of interior amide protons is promoted by global fluctuations of the protein structures comes from the observation that the order of the relative exchange rates for the individual protons is the same in all the different species. This is the third in a series of three papers on nuclear magnetic resonance studies of labile protons in BPTI-related proteins. A detailed interpretation of the data will be given in a forthcoming paper.  相似文献   

3.
The hydrogen exchange behavior of rhodopsin was re-examined by studies of the protein in the disc membrane and after solubilization in octyl glucoside. The methods used measure either the peptide hydrogens alone (hydrogen-deuterium exchange by infrared spectroscopy) or all slowly exchanging hydrogens (hydrogen-tritium exchange by hel filtration). Under mild exchange conditions, disc membranes and solubilized lipid-free proteins show very similar exchange behavior, indicating the absence of slowly exchanging lipid protons. At high temperature, exchange of an additional large group of very slow peptide NH can be detected. The total number of slow hydrogens significantly exceeds the amide content, and apparently includes slowly exchanging protons from perhaps 40% of the protein's non-amide side chains. This is thought to require the involvement of many polar side chains in internal H-bonding. The exchange rates of the non-amide side chains sites have not been determined. However, to the extent that these contribute to the fast time region of the measured kinetic H-exchange curve, previously identified with exposed, non-H-bonded peptides, the estimate of freely exposed rhodopsin peptides must be reduced. The fraction of free peptides could range from a remarkably high value of 70% down to about 45%.  相似文献   

4.
Lee AL  Sharp KA  Kranz JK  Song XJ  Wand AJ 《Biochemistry》2002,41(46):13814-13825
The temperature dependence of the fast internal dynamics of calcium-saturated calmodulin in complex with a peptide corresponding to the calmodulin-binding domain of the smooth muscle myosin light chain kinase is examined using 15N and 2H NMR relaxation methods. NMR relaxation studies of the complex were carried out at 13 temperatures that span 288-346 K. The dynamics of the backbone and over four dozen methyl-bearing side chains, distributed throughout the calmodulin molecule, were probed. The side chains show a much more variable and often considerably larger response to temperature than the backbone. A significant variation in the temperature dependence of the amplitude of motion of individual side chains is seen. The amplitude of motion of some side chains is essentially temperature-independent while many show a simple roughly linear temperature dependence. In a few cases, angular order increases with temperature, which is interpreted as arising from interactions with neighboring residues. In addition, a number of side chains display a nonlinear temperature dependence. The significance of these and other results is illuminated by several simple interpretative models. Importantly, analysis of these models indicates that changes in generalized order parameters can be robustly related to corresponding changes in residual entropy. A simple cluster model that incorporates features of cooperative or conditional motion reproduces many of the unusual features of the experimentally observed temperature dependence and illustrates that side chain interactions result in a dynamically changing environment that significantly influences the motion of internal side chains. This model also suggests that the intrinsic entropy of interacting clusters of side chains is only modestly reduced from that of independent side chain motion. Finally, estimates of protein heat capacity support the view that the major contribution to the heat capacity of protein solutions largely arises from local bond vibrations and solvent interactions and not from torsional oscillations of side chains.  相似文献   

5.
Summary Peptide-water interactions of a ribonuclease C-peptide analogue, RN-24 (Suc-AETAAAKFLRAHA-NH2), which exhibits significant helicity, have been studied in solution using homonuclear 2D and 3D NMR cross-relaxation experiments. Dipolar peptide proton-water proton interactions are indicated by a large number of NOESY-type cross peaks at the H2O resonance frequency, most of them with opposite sign relative to the diagonal. Some cross peaks arise from intrapeptide cross relaxation to labile protons of histidine, threonine, lysine and arginine side chains. The observed peptide-water interactions are rather uniformly distributed, involving peptide backbone and side chains equally. The data are consistent with rapid fluctuations of the conformational ensemble and the absence of peptide regions that are highly shielded from bulk solvent, even in a peptide that exhibits high propensities for formation of helical secondary structure.  相似文献   

6.
Many proteins fibrillate at low pH despite a high population of charged side chains. Therefore exchange of protons between the fibrillating peptide and its surroundings may play an important role in fibrillation. Here, we use isothermal titration calorimetry to measure exchange of protons between buffer and the peptide hormone glucagon during fibrillation. Glucagon absorbs or releases protons to an extent which allows it to attain a net charge of zero in the fibrillar state, both at acidic and basic pH. Similar results are obtained for lysozyme. This suggests that side chain pKa values change dramatically in the fibrillar state.  相似文献   

7.
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.  相似文献   

8.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

9.
We studied the temperature dependence of the picosecond internal dynamics of an all-beta protein, neocarzinostatin, by incoherent quasielastic neutron scattering. Measurements were made between 20 degrees C and 71 degrees C in heavy water solution. At 20 degrees C, only 33% of the nonexchanged hydrogen atoms show detectable dynamics, a number very close to the fraction of protons involved in the side chains of random coil structures, therefore suggesting a rigid structure in which the only detectable diffusive movements are those involving the side chains of random coil structures. At 61.8 degrees C, although the protein structure is still native, slight dynamic changes are detected that could reflect enhanced backbone and beta-sheet side-chain motions at this higher temperature. Conversely, all internal dynamics parameters (amplitude of diffusive motions, fraction of immobile scatterers, mean-squared vibration amplitude) rapidly change during heat-induced unfolding, indicating a major loss of rigidity of the beta-sandwich structure. The number of protons with diffusive motion increases markedly, whereas the volume occupied by the diffusive motion of protons is reduced. At the half-transition temperature (T = 71 degrees C) most of backbone and beta-sheet side-chain hydrogen atoms are involved in picosecond dynamics.  相似文献   

10.
In a native protein, the exchange of a peptide amide proton with solvent occurs by one of two pathways, either directly from the folded protein, or via unfolding, exchange taking place from the unfolded protein. From the thermal unfolding rate constants, the contribution of unfolding to the over-all kinetics as a function of solvent and temperature has been determined. Exchange involving unfolding of the protein is characterized by a high activation energy, in the range of 50 to 60 Cal per mol. The activiation energy (Eapp) of the rates of exchange directly from the folded protein is approximately 20 to 25 Cal per mol. Because for the proton transfer step, Eapp approximately equal to 20 Cal per mol, the activation energy for any contributing protein conformational process(es) is approximately equal to 0 to 5 Cal per mol. Most, if not all, of the peptide amide protons in a folded protein can exchange directly with solvent without the protein unfolding. The number of "slowly" exchanging protons at a given condition of pH and temperature is not related to a discrete structural unit, but rather to the distribution of observed rates within the broader distribution of actual rates. The large attenuation of hydrogen exchange rates in folded proteins, resulting in a distribution of first order rates over 6 orders of magnitude, is primarily due to the effects of restricted solvent accessibility of labile protons in the three-dimensional structure. Any protein conformational process, such as protein fluctuations, invoked to explain the solvent accessibility must be of low activation energy and attenuated by ethanol and other co-solvents (Woodward, C. K., Ellis, L. M., and Rosenberg, A. (1974) J. Biol. Chem. 250, 440-444).  相似文献   

11.
The effector domain of the myristoylated alanine-rich C-kinase substrate (MARCKS-ED) is a highly basic, unstructured protein segment that is responsible for attaching MARCKS reversibly to the membrane interface. When attached to the interface, it also has the capacity to sequester phosphoinosities, such as PI(4,5)P(2), within the plane of the bilayer. Here, the position of the MARCKS-ED was determined when bound to phospholipid bicelles using high-resolution NMR methods. Two sets of data indicate that the phenylalanine residues of the MARCKS-ED are positioned within the membrane hydrocarbon a few angstroms from the aqueous-hydrocarbon interface. First, short-range nuclear Overhauser effects are detected between the aromatic side chains and the lipid acyl chain methylenes. Second, paramagnetic enhancements of nuclear relaxation, produced by molecular oxygen, are similar for the phenylalanine aromatic protons and those observed for protons in the upper portion of the acyl chain. The rates of amide-water proton exchange are fast and only slightly hindered when the peptide is bound to bicelles, indicating that the backbone does not lie within the membrane hydrocarbon. These results indicate that highly charged peptides such as the MARCKS-ED penetrate the membrane interface with aromatic amino acid side chains inserted into the hydrocarbon and the peptide backbone lying within the bilayer interface. This position may serve to enhance the electrostatic fields produced by this basic domain at the membrane interface and may play a role in the ability of the MARCKS-ED to sequester polyphosphoinositides.  相似文献   

12.
Previously, a highly refined crystal structure and energy refined atomic coordinates were obtained for the basic pancreatic trypsin inhibitor, as well as numerous individual resonance assignments in the 1H NMR spectrum. These data were now used to investigate the contributions from the local ring current fields of the aromatic rings to the overall conformation dependent chemical shifts in this globular protein. A program was written which allowed the consideration of certain aspects of internal mobility of the protein, and the different commonly used ring current equa tions were compared. These studies indicate that ring current shifts are the dominant contribution to the observed conformation dependent chemical shifts of the peripheral aliphatic side chain protons. On the other hand, it appears that ring current shifts do not make dominant contributions to the conformation dependent shifts of the backbone alpha- and amide protons or the aromatic protons in the inhibitor. On the basis of the empirical calibration with the peripheral aliphatic side chain protons, the Johnson-Bovey ring current equation was selected for an analysis of the ring geometries of two prolines in the inhibitor.  相似文献   

13.
Doig AJ 《Biophysical chemistry》1996,61(2-3):131-141
The absolute Gibbs energy, enthalpy and entropy of each of the internal rotations found in protein side chains has been calculated. The calculation requires the moments of inertia of the side chains about each bond, the potential energy barrier and the symmetry number and gives the maximum possible thermodynamic consequences of restricting side chain motion when a protein folds. Hindering side chain internal rotations is unfavourable in terms of Gibbs energy and entropy; it is enthalpically favourable at 0 K. At room temperature, it is estimated that the adverse entropy of hindering buried side chain internal rotation is only 25% of the absolute entropy. The difference between absolute entropies in the folded and unfolded states gives the entropy change for folding. The estimated Gibbs energy change for restricting each residue correlates moderately well with the probability of that residue being found on the folded protein surface, rather than in the protein interior (where motion is restricted).  相似文献   

14.
The backbone dynamics of the EF-hand Ca(2+)-binding protein, calbindin D9k, has been investigated in the apo, (Cd2+)1 and (Ca2+)2 states by measuring the rate constants for amide proton exchange with solvent. 15N-1H correlation spectroscopy was utilized to follow direct 1H-->2H exchange of the slowly exchanging amide protons and to follow indirect proton exchange via saturation transfer from water to the rapidly exchanging amide protons. Plots of experimental rate constants versus intrinsic rate constants have been analyzed to give qualitative insight into the opening modes of the protein that lead to exchange. These results have been interpreted within the context of a progressive unfolding model, wherein hydrophobic interactions and metal chelation serve to anchor portions of the protein, thereby damping fluctuations and retarding amide proton exchange. The addition of Ca2+ or Cd2+ was found to retard the exchange of many amide protons observed to be in hydrogen-bonding environments in the crystal structure of the (Ca2+)2 state, but not of those amide protons that were not involved in hydrogen bonds. The largest changes in rate constant occur for residues in the ion-binding loops, with substantial effects also found for the adjacent residues in helices I, II and III, but not helix IV. The results are consistent with a reorganization of the hydrogen-bonding networks in the metal ion-binding loops, accompanied by a change in the conformation of helix IV, as metal ions are chelated. Further analysis of the results obtained for the three states of metal occupancy provides insight into the nature of the changes in conformational fluctuations induced by ion binding.  相似文献   

15.
T Pan  G C King  J E Coleman 《Biochemistry》1989,28(22):8833-8839
Deuteriation of all aromatic protons of gene 32 protein (g32P) from phage T4, followed by selective introduction of specific protons, has allowed the precise identification of the number and magnitude of the chemical shift changes induced in the aromatic protons when g32P binds noncooperatively or cooperatively to nucleotides. Signals from five Tyr residues are shifted by binding of g32P to d(pA)8 or d(pA)40-60; however, the change from noncooperative, d(pA)8, to cooperative, d(pA)40-60, binding causes significant increases in the magnitudes of the shifts for only two of these Tyr signals. These two Tyr residues may interact directly with the nucleotide bases, while the shifts associated with the other three Tyr may be due to conformational changes in g32P upon ssDNA binding. Similar conclusions can be drawn for two of the six Phe residues whose protons undergo shifts upon nucleotide binding. Observation of selected proton signals allows for the first time detection by 1H NMR of changes in the proton signals from two Trp residues upon nucleotide binding. The side chains of two Tyr, one or two Phe, and one Trp are probably directly involved in nucleotide base-protein interactions. As assayed by the signals from the H2 and H8 protons of adenine, the bases of a bound nucleotide are undergoing a fast chemical exchange in the noncooperative mode of binding, but shift to slow exchange upon assuming the cooperative mode of ssDNA interaction. When bound to a polynucleotide, the A domain of g32P (residues 254-301) becomes more mobile, as reflected in sharpening of the 1H NMR signals from the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Four exchangeable protons with large hyperfine shifts are assigned in the heme pocket of sperm whale met-cyano myoglobin reconstituted with heme possessing acetyl groups, ethyl groups, bromines, and hydrogens at the 2,4 position, using both relaxation and chemical-shift data. The four protons arise from the ring NH's of the proximal (F8), distal (E7), and FG2 histidines, and the peptide NH of His F8. The similarity of all chemical shifts to those of the native protein as well as the invariance of the relaxation rates of the distal histidyl ring NH dictate essentially the same structure for the heme cavity of both native and reconstituted proteins. The exchange rates with bulk water of the four labile proteins in each modified protein were determined by saturation-transfer and line width methods. All four labile protons were found to have the same exchange rate as in the native protein for acetyl and ethyl 2,4 substituents; the two resolved labile protons in the derivative with 2,4 bromine were also unchanged. The reconstituted protein with hydrogens at the 2,4 position exhibited slower exchange rates for three of the four protons, indicating an increased dynamic stability of the heme pocket in the absence of bulky 2,4 substituents.  相似文献   

17.
Sequence-specific 1H NMR assignments and secondary structure of eglin c   总被引:1,自引:0,他引:1  
S G Hyberts  G Wagner 《Biochemistry》1990,29(6):1465-1474
Sequence-specific nuclear magnetic resonance assignments were obtained for eglin c, a polypeptide inhibitor of the granulocytic proteinases elastase and cathepsin G and some other proteinases. The protein consists of a single polypeptide chain of 70 residues. All proton resonances were assigned except for some labile protons of arginine side chains. The patterns of nuclear Overhauser enhancements and coupling constants and the observation of slow hydrogen exchange were used to characterize the secondary structure of the protein. The results indicate that the solution structure of the free inhibitor is very similar to the crystal structure reported for the same protein in the complex with subtilisin Carlsberg. However, a part of the binding loop seems to have a significantly different conformation in the free protein.  相似文献   

18.
Proton spin-lattice relaxation measurements were performed in 10 mM lysozyme solution as a function of temperature and degree of substitution of solvent H2O with D2O. The results show that in the temperature range from 274 to 323 K, the intermolecular lysozyme proton water proton coupling contributes appreciably to the observed water proton relaxation rate. In this system exchange between water protons and labile protein protons does not dominate the behaviour with temperature of the water-lysozyme intermolecular contribution to the spin-lattice relaxation.  相似文献   

19.
Protein dynamics on the microsecond–millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively 13C labeled proteins by means of longitudinal- and transverse-relaxation optimization. Using selective excitation and inversion of the narrow component of the 13C doublet, the experiment achieves significant sensitivity enhancement in terms of both signal intensity and the fractional contribution from exchange to transverse relaxation; additional signal enhancement is achieved by optimizing the longitudinal relaxation recovery of the covalently attached 1H spins. We validated the L-TROSY-selected R experiment by measuring exchange parameters for Y23 in bovine pancreatic trypsin inhibitor at a temperature of 328 K, where the ring flip is in the fast exchange regime with a mean waiting time between flips of 320 μs. The determined chemical shift difference matches perfectly with that measured from the NMR spectrum at lower temperatures, where separate peaks are observed for the two sites. We further show that potentially complicating effects of strong scalar coupling between protons (Weininger et al. in J Phys Chem B 117: 9241–9247, 2013b) can be accounted for using a simple expression, and provide recommendations for data acquisition when the studied system exhibits this behavior. The present method extends the repertoire of relaxation methods tailored for aromatic side chains by enabling studies of faster processes and improved control over artifacts due to strong coupling.  相似文献   

20.
Antimicrobial peptides are universal host defense membrane-targeting molecules in a variety of life forms. Structure elucidation provides important insight into the mechanism of action. Here we present the three-dimensional structure of a membrane peptide in complex with dioctanoyl phosphatidylglycerol (D8PG) micelles determined by solution NMR spectroscopy. The model peptide, derived from the key antibacterial region of human LL-37, adopted an amphipathic helical structure based on 182 NOE-generated distance restraints and 34 chemical shift-derived angle restraints. Using the same NOESY experiment, it is also possible to delineate in detail the location of this peptide in lipid micelles via one-dimensional slice analysis of the intermolecular NOE cross peaks between the peptide and lipid. Hydrophobic aromatic side chains gave medium to strong NOE cross peaks, backbone amide protons and interfacial arginine side chain HN protons showed weak cross peaks, and arginine side chains on the hydrophilic face yielded no cross peaks with D8PG. Such a peptide-lipid intermolecular NOE pattern indicates a surface location of the amphipathic helix on the lipid micelle. In contrast, the epsilon HN protons of the three arginine side chains showed more or less similar intermolecular NOE cross peaks with lipid acyl chains when the helical structure was disrupted by selective d-amino acid incorporation, providing the basis for the selective toxic effect of the peptide against bacteria but not human cells. The differences in the intermolecular NOE patterns indicate that these peptides interact with model membranes in different mechanisms. Major NMR experiments for detecting protein-lipid NOE cross peaks are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号