共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M. K. Mahatma R. Bhatnagar G. K. Mittal L. Mahatma 《Archives Of Phytopathology And Plant Protection》2013,46(9):911-924
In this study, the ascorbic acid content, lipid peroxidation product, reactive oxygen generation and scavenging enzyme activities were determined in pearl millet [Pennisetum glaucum (L.) R.Br.] leaves. These parameters were analysed at two stages: (i) pre-infection [45 days after sowing (DAS)] and (ii) post-infection [7 days after infection (DAI), i.e. 57 DAS]. Lipid peroxidation product (malondialdehyde content) was recorded higher in compatible interaction at pre-infection stage while it was increased in incompatible interaction at post-infection stage. Resistant genotypes had higher ascorbic acid content at both the stages of analysis. Superoxide dismutase (SOD) activity was higher in susceptible genotypes at pre-infection but after infection it was found to be higher in resistant genotypes. Ascorbate peroxidase, catalase (CAT) and lipoxygenase activities were higher in resistant genotypes at both the stages of analysis. Native PAGE isozyme banding pattern of SOD, CAT, APX and esterase showed some inducible band(s) due to disease infection. 相似文献
3.
4.
Lassaad Belbahri Christian Boucher Thierry Candresse Michel Nicole Pierre Ricci Harald Keller 《The Plant journal : for cell and molecular biology》2001,28(4):419-430
Plants activate disease resistance responses when they recognize pathogen-derived molecules (elicitors). Frequently, recognition results in a hypersensitive response (HR), which is characterized by local host cell death at the infection site. Here we describe a genetic engineering approach to generate an HR in plants, whether or not an invading micro-organism produces a recognized elicitor. To that aim we created transgenic tobacco plants in which the pathogen-inducible promoter of the hsr203J gene from tobacco controls the expression of the popA elicitor gene from Ralstonia solanacearum. Because PopA itself also induces the hsr203J promoter, transgenic plants rapidly accumulate the bacterial elicitor in the pathogen infection sites. The elicitor becomes converted in plant tissues into its fully active derivatives PopA1-PopA3, showing that the previously observed processing events are not dependent on the bacterial type III secretion system. The outcome of induced PopA accumulation is a localized HR and a high degree of resistance of the transgenic plants to an oomycete pathogen. The system is functional in hybrids between different tobacco varieties, and we show that the engineered resistance, but not the associated cell death, is dependent on the salicylic acid signalling cascade. Although the approach is powerful in generating oomycete resistance, the induced HR might affect plant health. Its application thus requires a careful selection of individual transgenic lines and trials with various pathogens. 相似文献
5.
6.
Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans 下载免费PDF全文
Andrea P. Zuluaga Julio C. Vega‐Arreguín Zhangjun Fei Antonio J. Matas Sean Patev William E. Fry Jocelyn K. C. Rose 《Molecular Plant Pathology》2016,17(1):42-54
7.
Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora 总被引:2,自引:0,他引:2
Venisse JS Malnoy M Faize M Paulin JP Brisset MN 《Molecular plant-microbe interactions : MPMI》2002,15(12):1204-1212
Erwinia amylovora is the causal agent of fire blight, a disease affecting members of subfamily Maloideae. In order to analyze mechanisms leading to compatible or incompatible interactions, early plant molecular events were investigated in two genotypes of Malus with contrasting susceptibility to fire blight, after confrontation with either E. amylovora or the incompatible tobacco pathogen Pseudomonas syringae pv. tabaci. Many defense mechanisms, including generation of an oxidative burst and accumulation of pathogenesis-related proteins, were elicited in both resistant and susceptible genotypes by the two pathogens at similar rates and according to an equivalent time course. This elicitation was linked with the functional hypersensitive reaction and pathogenicity (hrp) cluster of E. amylovora, because an hrp secretion mutant did not induce such responses. However, a delayed induction of several genes of various branch pathways of the phenylpropanoid metabolism was recorded in tissues of the susceptible genotype challenged with the wild-type strain of E. amylovora, whereas these genes were quickly induced in every other plant-bacteria interaction, including interactions with the hrp secretion mutant. This suggests the existence of hrp-independent elicitors of defense in the fire blight pathogen as well as hrp-dependant mechanisms of suppression of these nonspecific inductions. 相似文献
8.
9.
Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions 总被引:1,自引:0,他引:1
Melillo MT Leonetti P Bongiovanni M Castagnone-Sereno P Bleve-Zacheo T 《The New phytologist》2006,170(3):501-512
Here, the interaction of Melodoigyne incognita virulent and avirulent pathotypes with susceptible and Mi-resistant tomato (Solanum lycopersicon) has been studied. Significant differences in nematode penetration occurred 2 days postinoculation (dpi) and became stable from 3 dpi onwards. The hypersensitive cell response (HR) in resistant plants prevented the installation of the avirulent pathotype. The virulent pathotype overcame the Mi (nematode) resistance and induced feeding sites in root cells without triggering HR. Reactive oxygen species (ROS), visualized by subcellular reduction of nitroblue tetrazolium, accumulated in nematode penetrated cells. Quantitative analyses with dichlorofluorescein indicated that the oxidative burst occurred very early with both pathotypes, with an enhanced rate in hyper-responsive cells. Hydrogen peroxide (H(2)O(2)), detected by cerium chloride reaction, accumulated in the cell walls and especially in cells neighbouring HR. The apoplastic location of cerium perhydroxide indicated that either the plasma membrane or the cell wall was the primary site of the superoxide/H(2)O(2) generator. The data provide evidence, for the first time, for ROS-generated signals and their spatiotemporal expression in the host and nonhost interaction of tomato with nematodes. 相似文献
10.
11.
12.
Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae 总被引:2,自引:0,他引:2
The metabolic and cellular changes in source leaves of Nicotiana tabacum L. cv SNN during an incompatible interaction with Phytophthora nicotianae van Breda de Haan were investigated and compared with defence reactions. Hypersensitive cell death was preceded by a rapid and highly localized shift to non-assimilatoric metabolism. During the first 6 h post infection (hpi), reactive oxygen species (ROS) accumulated. Callose was deposited at the interface of adjacent mesophyll cells (≥1 hpi), the export of sucrose collapsed and its content in the apoplast increased. Stomata closed and photosynthetic flux was reallocated from CO2 assimilation in favour of photorespiration. This was accompanied by an increase in respiration, glucose-6-phosphate dehydrogenase (G6PDH) activity, apoplastic invertase and hexose content. Later (>6 hpi) the photosynthetic electron transport chain was interrupted and photosynthesis completely collapsed. This was accompanied by a further increase in apoplastic invertase and carbohydrates, respiration and oxidative pentose phosphate pathway (OPPP) and followed by further burst in ROS release. Hypersensitive cell death did not appear until photosynthesis completely declined. Photosynthesis was visualized by chlorophyll-a fluorescence imaging on a macro- and microscopic scale. Decline in photosynthesis and defence reactions were highly localized processes, which occur in single mesophyll cells. We propose that in photoautotrophic leaves, photosynthesis and assimilatory metabolism must be switched off to initiate respiration and other processes required for defence. An early blockage of intercellular sugar transportation, due to callose deposition, in conjunction with enhanced apoplastic invertase activity could facilitate this metabolic shift. 相似文献
13.
Ali Safaie Farahani S. Mohsen Taghavi 《Physiology and Molecular Biology of Plants》2016,22(1):175-177
We compared lipoxygenase (LOX) expression in cucumber in response to host and non-host pathogens. Our results displayed significant difference in expression of LOX between compatible and incompatible interaction at 12, 24 and 48 h after inoculation. Moreover, LOX expression at 72 h after inoculation was similar in both compatible and incompatible interaction. It seems that early induction of LOX plays a crucial role in plant defense against pathogens. 相似文献
14.
15.
16.
17.
The proteomic profiles of primary needles from Cr2-resistant and cr2-susceptible Pinus monticola seedlings were analysed post Cronartium ribicola inoculation by 2-DE. One hundred-and-five protein spots exhibiting significant differential expression were identified using LC–MS/MS. Functional classification showed that the most numerous proteins are involved in defence signalling, oxidative burst, metabolic pathways, and other physiological processes. Our results revealed that differential expression of proteins in response to C. ribicola inoculation was genotype- and infection-stage dependent. Responsive proteins in resistant seedlings with incompatible white pine blister rust (WPBR) interaction included such well-characterized proteins as heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, and intermediate factors functioning in the signal transduction pathways triggered by well-known plant R genes, as well as new candidates in plant defence like sugar epimerase, GTP-binding proteins, and chloroplastic ribonucleoproteins. Fewer proteins were regulated in susceptible seedlings; most of them were in common with resistant seedlings and related to photosynthesis among others. Quantitative RT-PCR analysis confirmed HSP- and ROS-related genes played an important role in host defence in response to C. ribicola infection. To the best of our knowledge, this is the first comparative proteomics study on WPBR interactions at the early stages of host defence, which provides a reference proteomic profile for other five-needle pines as well as resistance candidates for further understanding of host resistance in the WPBR pathosystem. 相似文献
18.
Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae 总被引:16,自引:0,他引:16 下载免费PDF全文
Tao Y Xie Z Chen W Glazebrook J Chang HS Han B Zhu T Zou G Katagiri F 《The Plant cell》2003,15(2):317-330
We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the approximately 8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system. 相似文献
19.
20.
Nakajo N Deno YK Ueno H Kenmochi C Shimuta K Sagata N 《The International journal of developmental biology》2011,55(6):627-632
In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progression. In Xenopus laevis, three isoforms of cdc25 have been identified, viz. cdc25A, cdc25B and cdc25C. In this study, we isolated a cDNA encoding a novel Xenopus Cdc25 phosphatase (named cdc25D). We investigated the temporal and spatial expression patterns of the four cdc25 isoforms during early Xenopus development, using RT-PCR and whole-mount in situ hybridization. cdc25A and cdc25C were expressed both maternally and zygotically, whereas cdc25B and cdc25D were expressed zygotically. Both cdc25A and cdc25C were expressed mainly in prospective neural regions, whereas cdc25B was expressed preferentially in the central nervous system (CNS), such as the spinal cord and the brain. Interestingly, cdc25D was expressed in the epidermal ectoderm of the late-neurula embryo, and in the liver diverticulum endoderm of the mid-tailbud embryo. In agreement with the spatial expression patterns in whole embryos, inhibition of bone morphoge- netic protein (BMP), a crucial step for neural induction, induced an upregulation of cdc25B, but a downregulation of cdc25D in animal cap assays.These results indicate that different cdc25 isoforms are differently expressed and play different roles during early Xenopus development. 相似文献