首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism on the action of prymnesium toxin on membranes   总被引:3,自引:0,他引:3  
  相似文献   

2.
肉毒毒素(botulinum toxin,BTX)是肉毒梭状芽胞杆菌在生长繁殖过程中产生的一种外毒素,其通过抑制神经递质的释放而引起肌肉松弛型麻痹。在世界范围内,肉毒中毒的案例时有发生,病情严重的患者最终因呼吸衰竭而死亡。肉毒毒素相关产品在临床痉挛性疾病、腺体分泌过度、神经性疼痛的治疗及美容除皱等领域展现出广阔的应用前景。因而,肉毒毒素作用机制的研究在肉毒中毒的治疗以及临床新适应症的开发等方面具有重要意义。就肉毒毒素跨越小肠上皮细胞屏障的吸收及神经毒性作用机制的研究现状作一概述。  相似文献   

3.
4.
5.
6.
7.
Summary The weak acid 2,4-dinitrophenol (DNP) acts as an uncoupler of oxidative phosphorylation in biological systems and, in consonance with the Mitchell hypothesis, also enhances the conductance of phospholipid bilayer membranes. Several models have been proposed in the literature to explain the molecular mechanism by which DNP exerts its electrical effects on the model membranes, none of which accounts for all of the data, and all of which ignore the possibility that the anion of DNP is also binding to the surface of the bilayer and modifying the charge density. Experimental evidence is presented in this report which suggests that when a bilayer membrane is formed from a neutral lipid, DNP does in fact adsorb to its surface and produce a substantial negative surface potential. When this phenomenon is taken into account, the model proposed by Lea and Croghan and by Finkelstein is capable of describing all of the effects of DNP on bilayer membranes. In this model, the permeant species is a negatively charged complex formed from the undissociated acid and its anion.  相似文献   

8.
Cardiotoxin isolated from Naja mossambica mossambica selectively deactivates the sodium-potassium activated adenosine triphosphatase of axonal membranes. Tetrodotoxin binding and acetylcholinesterase activities are unaffected by cardiotoxin treatment. The details of association of cardiotoxin with the axonal membrane were studied by following the deactivation of the sodium-potassium activated adenosine triphosphatase and by direct binding measurements with a tritiated derivative of the native cardiotoxin. The maximal binding capacity of the membrane is 42-50 nmol of cardiotoxin/mg of membrane protein. The high amount of binding suggests association of the toxin with the lipid phase of the membrane. It has been shown that cardiotoxin first associates rapidly and reversibly to membrane lipids, then, in a second step, it induces a rearrangement of the membrane structure which produces and irreversible deactivation of the sodium-potassium activated adenosine triphosphatase. Solubilization of the membrane-bound ATPase with Lubrol WX gives an active enzyme species that is resistant to cardiotoxin-induced deactivation. Cardiotoxin binding to the membrane is prevented by high concentrations of Ca 2+ and dibucaine. Although cardiotoxins and neurotoxins of cobra venom have large sequence homologies, their mode of action on membranes is very different. The cardiotoxin seems to bind to the lipid phase of the axonal membrane and inhibits the sodium-potassium activated adenosine triphosphatase, whereas the neurotoxin associates with a protein receptor in the post-synaptic membrane and blocks acetylcholine transmission.  相似文献   

9.
The mechanism of action of cholera toxin in pigeon erythrocyte lysates.   总被引:34,自引:0,他引:34  
The adenylate cyclase activity of intact pigeon erythrocytes begins to rise after about 20 min of exposure to cholera toxin. The maximum rate at which the cyclase activity increases appears to be limited by the number of toxin molecules which can reach an intracellular target. If the erythrocytes are made permeable to the toxin by a bacterial hemolysin, no such limit exists, and adenylate cyclase activity starts to rise immediately upon the addition of toxin, and continues to rise to a maximum at an initially constant rate which is dependent upon the concentration of toxin. On lysed erythrocytes, the addition of cholera antitoxin immediately prevents any further rise in adenylate cyclase activity, but does not reverse any activation already achieved. Erythrocyte lysates may also be activated by isolated peptide A1 of cholera toxin, although activation of adenylate cyclase of intact erythrocytes requires the complete toxin molecule. In the intact cells, toxin first attaches by its Component B to surface receptors of which there are about 30 per erythrocyte. Subsequently, peptide A1 but not Component B is inserted into the erythrocyte. It takes only about 1 min at 37 degrees for peptide A1 to be sufficiently deep within the cell membrane to be inaccessible to extracellular antitoxin, but its complete transit through the membrane appears to take longer. The surface receptors are used only once, for they remain blocked by Component B. The number of receptors available on the surface may be increased by soaking cells in ganglioside GM1. Cholera toxin also decreases the rate of apparently spontaneous loss of adenylate cyclase activity and increases the response to epinephrine. Theophylline inhibits the action of cholera toxin.  相似文献   

10.
The mechanism of polymyxin B action and selectivity toward biologic membranes   总被引:17,自引:0,他引:17  
C C HsuChen  D S Feingold 《Biochemistry》1973,12(11):2105-2111
  相似文献   

11.
The receptor of alpha-latrotoxin (the major toxin of the black widow spider venom), purified from bovine synaptosomal membranes, was reconstituted into small unilamellar liposomes. These (but not control) liposomes exhibited high-affinity, specific binding of [125I]alpha-latrotoxin. In the receptor-bearing liposomes alpha-latrotoxin induced depolarization and stimulated 45Ca efflux. These responses to alpha-latrotoxin, that were observed only in the presence of external divalent cations, resembled those previously demonstrated in mammalian brain synaptosomes. The alpha-latrotoxin-activated ion fluxes are therefore, at least in part, the result of the direct interaction of the toxin with its receptor. When control and receptor-bearing liposomes were pre-incubated with alpha-latrotoxin and then added to a solution bathing a planar lipid bilayer membrane, single channel cationic conductances were observed. In the presence of the receptor, the conductances induced by alpha-latrotoxin were markedly different from those observed without the receptor, but not identical to those observed without the receptor, but not identical to those recently characterized by patch clamping in the cells of a line (PC12) sensitive to alpha-latrotoxin. These results demonstrate that the reconstituted receptor is functional, and suggest that the cationic channel activated by the toxin-receptor interaction is modulated by additional component(s) in the membrane of synapses and cells.  相似文献   

12.
13.
The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.  相似文献   

14.
15.
16.
The action of anaesthetics on phospholipid membranes   总被引:2,自引:0,他引:2  
  相似文献   

17.
Abstract

The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.  相似文献   

18.
19.
Malaria is an infectious disease responsible for approximately one million deaths annually. Oligopeptides such as angiotensin II (AII) and its analogs are known to have antimalarial effects against Plasmodium gallinaceum and Plasmodium falciparum. However, their mechanism of action is still not fully understood at the molecular level. In the work reported here, we investigated this issue by comparing the antimalarial activity of AII with that of (i) its diastereomer formed by only d ‐amino acids; (ii) its isomer with reversed sequence; and (iii) its analogs restricted by lactam bridges, the so‐called VC5 peptides. Data from fluorescence spectroscopy indicated that the antiplasmodial activities of both all‐D‐AII and all‐D‐VC5 were as high as those of the related peptides AII and VC5, respectively. In contrast, retro‐AII had no significant effect against P. gallinaceum. Conformational analysis by circular dichroism suggested that AII and its active analogs usually adopted a β‐turn conformation in different solutions. In the presence of membrane‐mimetic micelles, AII had also a β‐turn conformation, while retro‐AII was random. Molecular dynamics simulations demonstrated that the AII chains were slightly more bent than retro‐AII at the surface of a model membrane. At the hydrophobic membrane interior, however, the retro‐AII chain was severely coiled and rigid. AII was much more flexible and able to experience both straight and coiled conformations. We took it as an indication of the stronger ability of AII to interact with membrane headgroups and promote pore formation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
The distributions of specific absorption rate (SAR) and E-field in the membrane-forming hole of Teflon film and the surrounding electrolyte were calculated for 0.9 GHz microwave exposure. It was found that SAR in the hole increased greatly with increasing thickness of the Teflon film, increasing electrolyte concentration, and decreasing diameter of the hole. The previously demonstrated significant changes in the conductivity of modified bilayer lipid membranes induced by microwave exposure can be explained by a local increase in SAR and subsequent elevation of temperature in the membrane-forming hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号