首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which perturbations are modulated and delayed in population systems is a question of considerable theoretical and practical interest. Organisms with a temporal refuge, for example insects with prolonged diapause, are likely to have strongly buffered populations with long response lags, but little is known concerning how disturbances are actually mediated in natural populations. We show experimentally that the gall midge Contarinia vincetoxici has a prolonged diapause with a "bank" in the soil where diapausing larvae can reside for at least six winters. This bank acts as a strong buffer against disturbance. We stopped recruitment to the larval bank during eight years by removing all new galls, but no significant effects on gall density were found. Response lags may thus be very long even in populations of apparently shortlived animals. Population fluctuations during the last decade were evidently largely determined by events taking place prior to this period.  相似文献   

2.
How plant‐feeding insects distribute themselves and utilize their host plant resources is still poorly understood. Several processes may be involved, and their relative roles may vary with the spatial scale considered. Herein, we investigate small‐scale patterns, namely how population density of a gall midge is affected by individual growth form, phenology, and microsite characteristics of its herb host. The long‐lived plant individuals vary much with regard to number of shoots, flower abundance, and flowering phenology. This variation is connected to site characteristics, primarily the degree of sun exposure. The monophagous insect galls the flowers of the host plant – an easily defined food resource. It is a poor disperser, but very long‐lived; diapausing larvae can stay in the soil for many years. Galls were censused on individual plants during 5 years; from a peak to a low in gall population density. Only a very small fraction of the flowers produced (<0.5%) were galled even in the peak year. Nevertheless, most plant individuals had galls at least 1 year. In a stepwise multiple regression, plant size (number of shoots) was found to be the most important predictor of gall density (galls/flower). However, gall density decreased more than one order of magnitude over the plant size range observed. There was also a weak effect of plant phenology. Early flowering plants had lower gall densities than those starting later. Sun exposure had no direct effect on gall density, but a path analysis revealed indirect effects via the timing of flowering. Gall population change was highly synchronous in different parts of the study area with no significant decrease in synchrony with distance.  相似文献   

3.
4.
The number of larvae reaching maturity within the gall of Adelges japonicus was positively related to gall volume, and the relationship between the number of mature larvae and gall volume did not change with different densities of colonized larvae. The population changes in the bud galls of A. japonicus were surveyed by collecting the galls, which did not suffer predation or parasitism within the galls, from young artificial plantations of Picea jezoensis over two years. In the year when the density of colonized larvae was high, they suffered a 42% mortality within the galls, whereas mortality was nearly zero in the low density year. The numbers of larvae per gall were positively correlated with gall volume. The regression lines of the number of colonized larvae on gall volume did not differ significantly in the regression coefficients between the two years, whereas the intercept was significantly higher in the year when the density of colonized larvae was higher. However, different within-gall mortality nullified this difference, and the regression lines of the number of mature larvae on gall volume had no significant difference both in the regression coefficients and the intercepts. This suggests that the number of mature larvae per gall was limited by available resources within the gall which were positively related to gall volume. In 25% of the galls in which mature larvae inhabited, the space within the galls were completely filled by the larvae, indicating that space was one of the limiting resources. Gall volume also affected the number of adults that emerged from the gall and the potential number of their progeny.  相似文献   

5.
We examined seasonal patterns of gall morphology, growth, and survivorship of the agamic generation of a cynipid wasp, Aphelonyx glanduliferae, and discussed its mortality factors, especially from the point of view of refuge from parasitoid attack. Although the initiation period varied greatly among individual galls, the larvae of A. glanduliferae grew rapidly and reached their maximum size within 3 weeks before pupating in late September to early October. This growth period corresponded to the period when the gall walls became thinner. Parasitoid attack, which was the principal factor in the mortality of A. glanduliferae in the tree crown, was concentrated around the pupation period of the cynipid. Gall walls were significantly thinner in galls attacked by parasitoids than in those still containing a living cynipid. Therefore, the period available to parasitoids seems to be limited by both gall wall thickness and cynipid size. Thus, the growth pattern of A. glanduliferae larvae can have significance in that it narrows the window of vulnerability to parasitoids to a particular period. Although delaying gall initiation will also shorten the exposure period to parasitoid attacks, it was likely to increase the risk of death from gall abortion caused by seasonal degradation in the quality of host plant tissues. Although many cynipids were killed by disease in the galls that fell to the ground, the falling of mature galls to the ground may be another way to a parasitoid-free space. It is thus suggested that a trade-off among life history traits against multiple factors operates in the refuge of A. glanduliferae from parasitoid attack. Received: May 15, 2001 / Accepted: February 1, 2002  相似文献   

6.
Many animal species experiencing spatial or interannual fluctuations of their environment are capable of prolonged diapause, a kind of dormancy that extends over more than one year. Such a prolonged diapause is commonly perceived as a temporal demographic refuge in stochastic environments, but empirical evidence is still lacking of its consequences on temporal population genetic structures. In this long-term study, we investigated how a particular pattern of prolonged diapause may influence the temporal population genetics of the invasive seed-specialized wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in southeastern France. We characterized the diapause strategy of M. schimitscheki using records of emergence from diapause in 97 larval cohorts, and we conducted a temporal population genetic study on a natural invasive wasp population sampled during ten consecutive years (1999–2008) using polymorphic microsatellite markers. We found that M. schimitscheki can undergo a prolonged diapause of up to five years and displays two main adult emergence peaks after two and four years of diapause. Such a bimodal and atypical pattern did not disrupt temporal gene flow between cohorts produced in even and in odd years during the period of the study. Unexpectedly, we found that this wasp population consisted of two distinct genetic sub-populations that strongly diverged in their diapause strategies, with very few admixed individuals. One of the sub-populations displayed both short and prolonged diapause (2 and 4 years respectively) in equal proportions, whereas the other sub-population displayed mainly short diapause. This study provided empirical evidence that prolonged diapause phenotypes can substantially contribute to reproduction and impact temporal genetic structures. Prolonged diapause is likely to act as both demographic and genetic refuges for insect populations living in fluctuating environments.  相似文献   

7.
Variation in damage levels on certain black currant, Ribes nigrum L., genotypes, caused by the black currant leaf midge, Dasineura tetensi (Rübs.) (Diptera: Cecidomyiidae), has been observed in northern Sweden. I investigated whether this variation is due to variation in virulence among midges. From a field population of midges, I successfully selected for virulence and avirulence, respectively, on the resistant black currant genotype cultivar `Storklas' (called resistant genotype). The performance of avirulent and virulent midge larvae on two black currant genotypes were studied in experiments where first or second instar larvae were artificially transferred. There were no differences in larval survival and developmental rate between the two midge types when transferred to the susceptible currant genotype `7801–31' (called susceptible genotype). Larvae of the virulent strain established galls and developed on `Storklas' but development was initially slower there than on the susceptible currant genotype. Larvae of the avirulent strain suffered high mortality or remained in first instar on that same currant genotype when transferred alone, but developed readily if transferred together with virulent larvae. Larvae transferred in second instar to host plants susceptible to the larvae resumed feeding and developed further to maturity. Second instar larvae were also able to establish new galls even though these galls were not as well developed as those caused by first instar larvae. Black currant plantations in northern Sweden were surveyed and local midge populations were found to be composed of either avirulent, virulent or a mixture of both midge types. Virulent midges were not restricted to plantations where resistant currant genotypes were grown. I conclude that, at least, two biotypes of the midge exist, and that those two are distinguished by the ability to gall and survive on `Storklas'.  相似文献   

8.
A variety of insect species induce galls on host plants. Liquid chromatographic/tandem mass spectrometric analyses showed that a gall midge (Rhopalomyia yomogicola) that induces galls on Artemisia princeps contained high levels of indole-3-acetic acid and cytokinins. The gall midge larvae also synthesized indole-3-acetic acid from tryptophan. Close observation of gall tissue sections indicated that the larval chamber was surrounded by layers of cells having secondary cell walls with extensive lignin deposition, except for the part of the gall that constituted the feeding nutritive tissue which was composed of small cells negatively stained for lignin. The differences between these two types of tissue were confirmed by an expression analysis of the genes involved in the synthesis of the secondary cell wall. Phytohormones may have functioned in maintaining the feeding part of the gall as fresh nutritive tissue. Together with the results in our previous study, those presented here suggest the importance of phytohormones in gall induction.  相似文献   

9.
A new genus Oxycephalomyia is described to contain the gall midge that was previously known as Asteralobia styraci (Shinji). Oxycephalomyia styraci, comb. nov., produces leaf vein galls on Styrax japonicus (Styracaceae). The adult of O. styraci is redescribed, and its full‐grown larva and pupa are described for the first time. The annual life cycle of the gall midge in northern Kyushu was clarified; the first instars overwinter in the galls on the host plant. However, the galls of O. styraci mature much later in the season than those of other gall midges with a similar life history pattern, and the durations of second and third larval instars are remarkably short. Such a life history pattern is considered to have an adaptive significance in avoiding larval parasitism, particularly by early attackers. The number of host axillary buds as oviposition sites decreased in bearing years and increased in off years, but there was no sign of oviposition site shortage even in bearing years, probably due to the low population density of the gall midge. An unidentified lepidopteran that feeds on galled and ungalled host buds and a Torymus sp. that attacks pupae of O. styraci were recognized as mortality factors of the gall midge.  相似文献   

10.
Procystiphora uedai sp. nov., a cecidomyiid inducing subglobular galls on Sasa nipponica Makino and Shibata on Mount Ôdaigahara, Nara Prefecture, Japan is described herein. This species is distinguishable from the three known congeners by the following characteristics of the female post-abdomen: tergite VIII concave at both anterior and posterior margins; tergites VII, VIII and sternite VII unsclerotized; ovipositor–dorsoventrally inverted. Most individuals of this gall midge are univoltine and pupate in the galls in early September, but some individuals enter prolonged diapause at the third larval stadium and remain in the mature galls until the following year. Larvae of this species are attacked by two parasitoid species, Pediobius sasae Hansson (Eulophidae) and Torymus sp. (Torymidae).  相似文献   

11.
Parasitism may explain the patchy distributions of host populations. The present paper is a study of larval distributions of the parasitoid Eurytoma robusta in galls of the tephritid gall fly Urophora cardui. It focuses on E. robusta's choice of U. cardui gall and whether this changes relative to the rate of parasitism. Oviposition patterns were inferred by direct counts of larvae in galls and genetically, for both species, using indirect relatedness estimates between gall‐members. Furthermore, rates of parasitism in four populations were monitored for 4 years. The modal distribution of E. robusta larvae per gall was one and independent of the level of parasitism. The mean number of E. robusta per gall did not differ from Poisson distributions at different parasitism rates. We were not able to demonstrate a parasitoid preference for gall size. In contrast, parasitoids may have a negative effect on gall growth. Relatedness estimates showed that E. robusta gall members were often unrelated, whereas U. cardui were siblings. Thus, larval distributions of E. robusta suggest that oviposition behaviour is generally constrained and density independent. In four populations monitored over 4 years, parasitism was initially high (up to 70%), but suddenly declined with no apparent effect on fly (gall) abundance.  相似文献   

12.
Life historical, behavioral and ecological traits of Macrodiplosis selenis, which induces leaf‐margin fold galls on Quercus serrata, Q. mongolica and Q. dentata (Fagaceae) in Japan and South Korea, were studied. Daily activity and larval development indicate that M. selenis is a diurnal and univoltine gall midge. In April, females lay their eggs both on upper and under surfaces of fresh leaves. The duration of the egg stage varies from 5 to 9 days, depending on daily temperatures. Hatched larvae crawl to the upper surface of the leaf margin, where they start to induce galls. Larvae become full‐grown in October, drop to the ground in November and overwinter in cocoons on the ground, while larvae of congeners mature in May and drop to the ground in June. A relatively long period of the second larval stadium from July to October on the host trees seems to be effective for M. selenis in avoiding summer mortalities caused by predation and aridity on the ground and by ectoparasitoids that attack mature larvae or pupae on the host leaves. The spatial distribution pattern of M. selenis leaf galls is contagious and the mean gall density per leaf is significantly correlated with the mean crowding. This study adds new insights of life history strategy and adult and larval behavioral pattern to the ecological knowledge of gall midges, and these kinds of information are essential for further studies of M. selenis population dynamics and interactions with other Quercus‐associated herbivores.  相似文献   

13.
14.
1. The importance of host‐race formation to herbivorous insect diversity depends on the likelihood that successful populations can be established on a new plant host. A previously unexplored ecological aid to success on a novel host is better nutritional quality. The role of nutrition was examined in the shift of the stem‐boring beetle Mordellistena convicta to fly‐induced galls on goldenrod and the establishment there of a genetically distinct gall host race. 2. First, larvae of the host race inhabiting stems of Solidago gigantea were transplanted into stems and galls of greenhouse‐grown S. gigantea plants. At the end of larval development, the mean mass of larvae transplanted to galls was significantly greater than the mass of larvae transplanted to stems, indicating a likely nutritional benefit during the shift. This advantage was slightly but significantly diminished when the gall‐inducing fly feeding at the centre of the gall died early in the season. Additionally, there was a suggestion of a trade‐off in the increased mortality of smaller beetle larvae transplanted into galls. 3. In a companion experiment, S. gigantea gall‐race beetle larvae were likewise transplanted to S. gigantea stems and galls. Besides the expected greater mass in galls, the larvae also exhibited adaptations to the gall nutritional environment: larger inherent size, altered tunnelling behaviour, and no diminution of mass pursuant to gall‐inducer mortality. 4. In a third line of inquiry, chemical analyses of field‐collected S. gigantea plants revealed higher levels of mineral elements important to insect nutrition in galls as compared with stems.  相似文献   

15.
Four gall midge species (Diptera: Cecidomyiidae) that induce leaf galls on Styrax japonicus (Styracaceae) were identified to generic level based on larval morphology. Three of these gall midges, which induce whitish hemiglobular galls, flattened subglobular galls, and purple globular galls, respectively, were identified as three genetically distinct species of Contarinia, and the remaining species, which induces globular galls with dense whitish hairs, was identified as a species of Dasineura. Field surveys in Fukuoka, Japan, revealed that adults of these gall midges emerged and oviposited in late March to mid‐April at Mount Tachibana (approximately 200 m a.s.l.) and in late April to early May at Mount Sefuri (about 1050 m a.s.l.), coinciding with the leaf‐opening season of S. japonicus. Larvae of these gall midges mostly developed into third instars by June and then left their galls and dropped to the ground. These species therefore have a life history strategy that differs from that of another S. japonicus‐associated gall midge, Oxycephalomyia styraci, which overwinters as the first instar in ovate swellings, matures rapidly in spring, and emerges directly from the galls.  相似文献   

16.
Abstract 1. Field studies were conducted to evaluate the preference and performance of a gall‐inducing midge (Harmandia tremulae) within the crown of trembling aspen (Populus tremuloides). Females did not select oviposition sites preferentially within leaves, but did lay preferentially on young leaves. 2. Larvae were the only life stage involved in gall site selection within leaves and in gall initiation and development. Gall size, which was positively related to survival, was highest for galls on mid veins that were located close to the petiole. However, one‐third of galls were located on lateral veins and most galls were not adjacent to the petiole, indicating that many larvae choose sub‐optimal gall initiation sites. 3. Gall density was positively associated with leaf length, and leaf length, was positively associated with gall size. However, gall density per leaf was not related to larval survival in galls. This latter result may be a result of an observed inverse relationship between gall size and gall density for similar‐sized leaves. 4. The results partially support the plant vigour and optimal plant module size hypotheses, which predict that galler fitness in successfully induced galls should be highest on large, fast‐growing plant modules. The lack of a strong preference‐performance link supports the confusion hypothesis, which predicts that oviposition and gall site selection may often be suboptimal in systems where galler lifespan is short. This study suggests that small‐scale variations in plant quality within leaves, can render gall site selection by juveniles as important as that previously reported for adult females.  相似文献   

17.
Although larvae of flea weevils (Curculioninae: Rhamphini) have been known to be leaf miners, larvae of the rhamphine weevil Orchestes hustachei have been found in aphid galls of four Tetraneura species on Ulmus davidiana and in galls of Paracolopha morissoni on Zelkova serrata. This study clarified the feeding habits of O. hustachei larvae and evaluated gall selection by ovipositing females to test the hypothesis of host race formation on their hosts, Tetraneura and Paracolopha galls. When weevil larvae were placed in half‐cut galls, they always fed on aphids rather than on gall tissue. When given gall tissue only, all larvae failed to reach adulthood. The number of aphids surviving in a parasitized gall decreased significantly with the development of the weevil larvae. These results suggest that O. hustachei larvae use aphids as their major food source. In the field, ovipositing females did not discern between four Tetraneura species on U. davidiana, in spite of a large difference in suitability as food. Paracolopha morrisoni was introduced into Hokkaido approximately 100 years ago, together with the host plant Z. serrata. It is probable that P. morrisoni has recently come to be used as a host by O. hustachei in Hokkaido. Host choice experiments using Tetraneura sp. O and P. morrisoni galls indicated that female weevils from Z. serrata preferred P. morrisoni to Tetraneura sp. O galls, while females from U. davidiana selected the two types of gall randomly. On Z. serrata, female weevils selected larger P. morrisoni galls, while on U. davidiana, females did not show a preference for gall size. These results suggest that a host shift to P. morrisoni galls may have led to an initial stage of host race formation between the weevil population using Tetraneura galls on U. davidiana, and that using P. morrisoni galls on Z. serrata.  相似文献   

18.
F. Menu 《Oecologia》1993,96(3):383-390
In the chestnut weevil Curculio elephas, adult emergences spread over 3 or 4 years due to prolonged larval diapause in some individuals. Weevils with an extended diapause emerge, on the average, 1–10 days before those with simple diapause, but whatever the age of insects, emergences occur always from mid-August to early October. When the summer is dry, some adults cannot emerge because of the hardness of the soil. Emergence sucess of adults is smaller in females than in males. The result is that the sex ratio is female-biased before emergence and male-biased after. Summer drought cannot be predicted by the chestnut weevil, and when the soil is dry 27–78% of females cannot emerge and do not reproduce. The year after a summer drought, many reproducing females may emerge from larvae with prolonged diapause. These results suggest an evolutionary influence on the variability in diapause duration. Computer simulations and observations do not support the hypothesis that the main cause of variation in diapause length is the existence of several distinct genotypes within populations. On the contrary, our data strengthen the hypothesis for coin-flipping plasticity discussed in a previous paper.  相似文献   

19.
Abstract.
  • 1 Substantial intraspecific variation exists in Salix viminalis resistance to the gall midge Dasineura marginemtorquens. Earlier work has found this variation to have a large genetic component. Willow clones are stable in their resistances between midge generations and different nutrient levels in both field and laboratory culture.
  • 2 This study reports the results of laboratory experiments on female oviposition choice and larval survival on potted plants from clones that are very different in resistance as determined in field studies.
  • 3 In choice experiments using pairs of plants, the average female midge did not prefer susceptible willow clones over resistant ones for oviposition. In about one third of the replicates, midges actually laid more eggs on the resistant clone. Further work is necessary to examine the nature of variation among midges in discrimination of these plant types.
  • 4 Resistance is manifested as great differences in larval survival. Six days after oviposition survival was 92% on susceptible plants but only 6% on resistant ones. Galls developed on all of the susceptible plants, while in 73% of the resistant plants galls were not even initiated.
  • 5 The plant traits causing resistance are enigmatic. Larval behaviour suggests that resistant plants interfere with feeding behaviour. On resistant plants, most larvae wander for more than 24 h without initiating any galls before dying. On susceptible plants many first instar larvae begin feeding and initiate galls within this period.
  相似文献   

20.
Abstract

A platygastrid wasp that feeds on the snow tussock flower midge in the inflorescences of New Zealand snow tussock grasses (Chionochloa spp.) is formally described. Zelostemma chionochloae is a specialist natural enemy of Eucalyptodiplosis chionochloae Kolesik which is the most ubiquitous and sophisticated seed predator of Chionochloa. Z. chionochloae is a koinobiont parasitoid and some larvae enter prolonged diapause inside their host for at least 2 years. Methods for adult rearing are described. The phenology of Z. chionochloae is highly synchronised with its host even after 2 years in diapause. Parasitism levels were found to differ between years and elevations, while sex ratios differed among years. Z chionochloae probably suffers inter‐specific competition with another host‐specific hymenopteran parasitoid (Gastrancistrus sp.) which also parasitises E. chionochloae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号