首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Haemodynamic responses to hypothermia were studied at normal haematocrit and following the induction of acute normovolaemic haemodilution. Experiments were performed on 20 cats anaesthetized with a mixture of chloralose and urethane in two groups. In one group (n=10) the effects of hypothermia on various haemodynamic variables were studied at normal haematocrit (41.0±1.7%) and in the second group of cats (n=10) the effects of hypothermia on various haemodynamic variables were studied after the induction of acute normovolaemic haemodilution (14.0±1.0%). The haemodynamic variables left ventricular pressure, left ventricular contractility, arterial blood pressure, heart rate and right atrial pressure were recorded on a polygraph. Cardiac output was measured using a cardiac output computer. In both groups hypothermia was induced by surface cooling with the help of ice. Cardiovascular variables were recorded at each 1° C fall in body temperature. Hypothermia produced a significant (P<0.05) drop in heart rate, cardiac output, arterial blood pressure and left ventricular contractility in both groups. However, the percentage decrease in these variables in response to hypothermia was significantly (P<0.05) higher in cats with low haematocrit than in those with normal haematocrit. The severity of hypothermia – induced cardiovascular effects is evident from the drastic decrease in heart rate, cardiac output, arterial blood pressure and myocardial contractility in cats with low haematocrit, indicating a higher risk of circulatory failure under anaemic conditions at low temperatures. Received: 21 October 1996 / Revised: 20 April 1997 / Accepted 21 May 1997  相似文献   

2.
《Cryobiology》2009,58(3):246-250
The purpose of this study was to determine cardiovascular β-adrenergic responses during hypothermia. In the present study, we used isoproterenol (Iso), a nonselective, potent β-adrenoceptor agonist, well known for its positive chronotropic and inotropic pharmacologic actions at normothermia. Rats were instrumented to measure mean arterial pressure (MAP) and left ventricular (LV) pressure–volume changes using a Millar pressure–volume conductance catheter. Core temperature was manipulated from 37 (normothermia) to 24 °C (hypothermia) and back to 37 °C (rewarming) using both internal and external heat exchangers. During cooling at each temperature (33, 30, 27, and 24 °C), central hemodynamic variables and MAP were measured while intravenously infusing Iso (doses of 1.7, 5, 10, and 20 ng/min). Seven animals underwent all phases of the protocol. At normothermia Iso infusion resulted in a significant, dose-dependent increase in heart rate (HR), stroke volume (SV), cardiac output (CO), LV dP/dtmax (left ventricular maximum derivative of systolic pressure over time) but no change in MAP. During cooling Iso infusion caused no dose-dependent change in any of the hemodynamic variables. After rewarming, baseline HR and LV dP/dtmax were increased, whereas SV was significantly reduced when compared with their pre-hypothermic baseline values. This study shows that physiological cardiovascular responses mediated by the β-adrenoceptor are significantly diminished during core hypothermia.  相似文献   

3.
The gene expression changes produced by moderate hypothermia are not fully known, but appear to differ in important ways from those produced by heat shock. We examined the gene expression changes produced by moderate hypothermia and tested the hypothesis that rewarming after hypothermia approximates a heat-shock response. Six sets of human HepG2 hepatocytes were subjected to moderate hypothermia (31°C for 16 h), a conventional in vitro heat shock (43°C for 30 min) or control conditions (37°C), then harvested immediately or allowed to recover for 3 h at 37°C. Expression analysis was performed with Affymetrix U133A gene chips, using analysis of variance-based techniques. Moderate hypothermia led to distinct time-dependent expression changes, as did heat shock. Hypothermia initially caused statistically significant, greater than or equal to twofold changes in expression (relative to controls) of 409 sequences (143 increased and 266 decreased), whereas heat shock affected 71 (35 increased and 36 decreased). After 3 h of recovery, 192 sequences (83 increased, 109 decreased) were affected by hypothermia and 231 (146 increased, 85 decreased) by heat shock. Expression of many heat shock proteins was decreased by hypothermia but significantly increased after rewarming. A comparison of sequences affected by thermal stress without regard to the magnitude of change revealed that the overlap between heat and cold stress was greater after 3 h of recovery than immediately following thermal stress. Thus, while some overlap occurs (particularly after rewarming), moderate hypothermia produces extensive, time-dependent gene expression changes in HepG2 cells that differ in important ways from those induced by heat shock.  相似文献   

4.
This experimental study was performed to explore hemodynamic effects of a moderate dose epinephrine (Epi) during hypothermia and to test the hypothesis whether sympathetic stimulation during cooling affects myocardial function following rewarming. Two groups of male Wistar rats (each, n=7) were cooled to 15 degrees C, maintained at this temperature for 1 h, and then rewarmed. Group 1 received 1 microg/min Epi, i.v., for 1 h during cooling to 28 degrees C, a dose known to elevate cardiac output (CO) by approximately 25% at 37 degrees C. Group 2 served a saline solution control. At 37 degrees C, Epi infusion elevated CO, left ventricular systolic pressure, maximum rate of left ventricle pressure rise, and mean arterial pressure. During cooling to 28 degrees C, these variables, with the exception of mean arterial pressure, decreased in parallel to those in the saline solution group. In contrast, in the Epi group, mean arterial pressure remained increased and total peripheral resistance was significantly elevated at 28 degrees C. Compared with corresponding prehypothermic values, most hemodynamic variables were lowered after 1 h at 15 degrees C in both groups (except for stroke volume). After rewarming, alterations in hemodynamic variables in the Epi-treated group were more prominent than in saline solution controls. Thus, before cooling, continuous Epi infusion predominantly stimulates myocardial mechanical function, materialized as elevation of CO, left ventricular systolic pressure, and maximum rate of left ventricle pressure rise. Cooling, on the other hand, apparently eradicates central hemodynamic effects of Epi and during stable hypothermia, elevation of peripheral vascular vasopressor effects seem to take over. In contrast to temperature-matched, non-Epi stimulated control rats, a significant depression of myocardial mechanical function occurs during rewarming following a moderate sympathetic stimulus during initial cooling.  相似文献   

5.
The efficacy of moderate hypothermia with rewarming in attenuating the myocardial and circulatory consequences of acute coronary ligation was studied in open-chest, anesthetized dogs. Thirty minutes after ligation of the proximal left anterior descending coronary artery, 14 dogs were surface-cooled to 27 degrees C, maintained at this temperature for 2 hr, rewarmed to normothermic levels, and monitored for an additional hour. Fifteen dogs were maintained for a corresponding time period after coronary ligation at normothermic levels. Dogs maintained normothermic demonstrated significant depression (from preligation values) of dP/dt, cardiac output (CO), stroke volume (SV), and left ventricular stroke work and power (LVSW, LVSP) at elevated levels of left ventricular end-diastolic pressure (LVEDP). Dogs subjected to the hypothermic procedure demonstrated decreased inotropic status during hypothermia, but with rewarming, exhibited significantly greater values of left ventricular pressure, dP/dt, CO, SV, LVSW, and LVSP at lower values of LVEDP than observed in dogs maintained normothermic. Increased dysrhythmic activity was not observed during hypothermia. Hearts from dogs subjected to the hypothermic protocol demonstrated qualitatively greater dehydrogenase activity both at the periphery and in the center of the nonperfused region. The results suggest that moderate hypothermia during evolving myocardial infarction may preserve left ventricular cardio- and hemodynamics and thus may be useful in delaying morphological and functional deterioration until definitive treatment can be instituted.  相似文献   

6.
《Cryobiology》2015,70(3):402-410
BackgroundPrevious research aimed at ameliorating hypothermia-induced cardiac dysfunction has shown that inotropic drugs, that stimulate the cAMP, – PKA pathway via the sarcolemmal β-receptor, have a decreased inotropic effect during hypothermia. We therefore wanted to test whether levosimendan, a calcium sensitizer and dose-dependent phosphodiesterase 3 (PDE3) inhibitor, is able to elevate stroke volume during rewarming from experimental hypothermia.MethodsA rat model designed for circulatory studies during experimental hypothermia (4 h at 15 °C) and rewarming was used. The following three groups were included: (1) A normothermic group receiving levosimendan, (2) a hypothermic group receiving levosimendan the last hour of stable hypothermia and during rewarming, and (3) a hypothermic placebo control group. Hemodynamic variables were monitored using a Millar conductance catheter in the left ventricle (LV), and a pressure transducer connected to the left femoral artery. In order to investigate the level of PKA stimulation by PDE3 inhibition, myocardial Ser23/24-cTnI phosphorylation was measured using Western-blot.ResultsAfter rewarming, stroke volume (SV), cardiac output (CO) and preload recruitable stroke work (PRSW) were restored to within pre-hypothermic values in the levosimendan-treated animals. Compared to the placebo group after rewarming, SV, CO, PRSW, as well as levels of Ser23/24-cTnI phosphorylation, were significantly higher in the levosimendan-treated animals.ConclusionThe present data shows that levosimendan ameliorates hypothermia-induced systolic dysfunction by elevating SV during rewarming from 15 °C. Inotropic treatment during rewarming from hypothermia in the present rat model is therefore better achieved through calcium sensitizing and PDE3 inhibition, than β-receptor stimulation.  相似文献   

7.
Differential cerebral hypothermia was induced in these experiments by isolating the cerebral circulation in the halothane-anesthetized goat. The brain was perfused through isolated cerebral branches of the internal maxillary artery using a height-adjusted reservoir system which provided a constant inflow pressure. Cerebral blood flow (CBF) and cerebral O2 metabolic rate (CMRO2) were measured continuously as brain temperatures were decreased from 38 to 28, 18 and 8 °C and during rewarming. Arterial blood gases were maintained constant. During hypothermia CBF decreased at brain temperatures of 28 °C and did decrease further at 18 or 8 °C. CMRO2 decreased linearly from 38 to 8 °C and was 7% control levels at 8 °C. CBF and CMRO2 returned to control levels upon rewarming. Cerebral lactate metabolism did not change significantly during hypothermia or rewarming. Evoked cortical potentials were abolished at 8 °C but recovered upon rewarming. These results indicate that if adequate brain perfusion is maintained during hypothermia and rewarming, recovery of CBF, metabolism, and brain neural activity can be obtained.  相似文献   

8.
Rewarming from accidental hypothermia is often complicated by "rewarming shock," characterized by low cardiac output (CO) and a sudden fall in peripheral arterial pressure. In this study, we tested whether epinephrine (Epi) is able to prevent rewarming shock when given intravenously during rewarming from experimental hypothermia in doses tested to elevate CO and induce vasodilation, or lack of vasodilation, during normothermia. A rat model designed for circulatory studies during experimental hypothermia and rewarming was used. A total of six groups of animals were used: normothermic groups 1, 2, and 3 for dose-finding studies, and hypothermic groups 4, 5, and 6. At 20 and 24 degrees C during rewarming, group 4 (low-dose Epi) and group 5 (high-dose Epi) received bolus injections of 0.1 and 1.0 microg Epi, respectively. At 28 degrees C, Epi infusion was started in groups 4 and 5 with 0.125 and 1.25 microg/min, respectively. Group 6 served as saline control. After rewarming, both CO and stroke volume were restored in group 4, in contrast to groups 5 and 6, in which both CO and stroke volume remained significantly reduced (30%). Total peripheral resistance was significantly higher in group 5 during rewarming from 24 to 34 degrees C, compared with groups 4 and 6. This study shows that, in contrast to normothermic conditions, Epi infused during hypothermia induces vasoconstriction rather than vasodilation combined with lack of CO elevation. The apparent dissociation between myocardial and vascular responses to Epi at low temperatures may be related to hypothermia-induced myocardial failure and changes in temperature-dependent adrenoreceptor affinity.  相似文献   

9.
The effects of intravenous dopamine were evaluated in 10 patients with severe but stable coronary artery disease, 17 consecutive patients with primary cardiogenic shock and 3 with severe congestive heart failure and oliguria. Dopamine infusion at 10 μg/kg·min in the 10 patients increased cardiac output by 35%, left ventricular peak dP/dt by 38%, left ventricular minute work index by 44% and mean systolic ejection rate by 7% (P < 0.01); heart rate, aortic pressure, left ventricular end-diastolic pressure and tension-time index were unchanged. For oxygen, potassium and lactate, arterial and coronary sinus values, coronary arteriovenous oxygen differences and myocardial extraction were unchanged. Hemodynamically 13 of the 17 patients in shock responded favourably to dopamine infusion (0.5 to 15 μg/kg·min), with decrease in heart rate, increase in systolic arterial pressure from 75 to 100 mm Hg (P <0.001), decrease in ventricular filling pressure from 20 to 16 mm Hg (P < 0.01) and increase in urine output from 10 to 100 ml/h (P < 0.01). Eleven of those patients survived the shock episode. A close relation was observed between the hemodynamic response to dopamine, survival from the shock episode and the time between onset of shock and initiation of therapy. Low rates of dopamine infusion induced diuresis in the three patients with severe cardiac failure.Dopamine thus seems to improve the mechanical efficiency of the heart in coronary artery disease. Cardiac output is selectively increased and myocardial ischemia does not appear to be induced; those beneficial effects as well as presumably specific action on renal flow and natriuresis, improve immediate survival from cardiogenic shock and severe heart failure.  相似文献   

10.
Isolated lamb hearts were perfused at 13 °C for 24 hr with whole fresh blood using a silicone rubber circuit and a membrane lung (N = 7); there was formation of thrombi, deposition of fibrin, and an increase in resistance to blood flow in the membrane lung. The perfused hearts fibrillated at hypothermia and showed unequal recovery of function upon final rewarming.There was less rise in membrane lung resistance when the perfusion circuit was primed with blood at 38 instead of 13 °C and then cooled progressively to 13 °C. Some hearts perfused in these circuits were well preserved but others became edematous with loss of ventricular contractility (N = 6).Coating the perfusion circuit with a hypothrombogenic material, silica-free silicone rubber and priming the circuit at 38 °C prevented any rise in membrane lung resistance during blood perfusion. All the hearts perfused in these circuits (N = 6) had the same left ventricular function before and after cold perfusion.Thus isolated hearts can be perfused in vitro with whole blood at hypothermic temperature without loss in function when attention is paid to thrombogenicity of materials used to construct the perfusion circuit.  相似文献   

11.
The purpose of this study was to determine cardiovascular β-adrenergic responses during hypothermia. In the present study, we used isoproterenol (Iso), a nonselective, potent β-adrenoceptor agonist, well known for its positive chronotropic and inotropic pharmacologic actions at normothermia. Rats were instrumented to measure mean arterial pressure (MAP) and left ventricular (LV) pressure–volume changes using a Millar pressure–volume conductance catheter. Core temperature was manipulated from 37 (normothermia) to 24 °C (hypothermia) and back to 37 °C (rewarming) using both internal and external heat exchangers. During cooling at each temperature (33, 30, 27, and 24 °C), central hemodynamic variables and MAP were measured while intravenously infusing Iso (doses of 1.7, 5, 10, and 20 ng/min). Seven animals underwent all phases of the protocol. At normothermia Iso infusion resulted in a significant, dose-dependent increase in heart rate (HR), stroke volume (SV), cardiac output (CO), LV dP/dtmax (left ventricular maximum derivative of systolic pressure over time) but no change in MAP. During cooling Iso infusion caused no dose-dependent change in any of the hemodynamic variables. After rewarming, baseline HR and LV dP/dtmax were increased, whereas SV was significantly reduced when compared with their pre-hypothermic baseline values. This study shows that physiological cardiovascular responses mediated by the β-adrenoceptor are significantly diminished during core hypothermia.  相似文献   

12.
The integrity of coronary vascular endothelial vasodilator function during core cooling and rewarming was investigated in a pentobarbital-anesthetized open-chest dog model. Vasodilator response was assessed as the change from baseline blood flow by injecting the endothelial-dependent vasodilator acetylcholine (ACh) (1.0 microg) or the endothelial-independent vasodilator nitroglycerin (NTG) (50 microg) into the left anterior descending (LAD) coronary artery. Change in blood flow was measured using a transit time ultrasonic volume flowmeter technique. During cooling and rewarming LAD blood flow was significantly decreased. After rewarming, aortic pressure was artificially elevated to reach control. This procedure restored heart work (LV-RPP, left ventricular rate pressure product) and coronary perfusion pressure, but LAD blood flow remained lowered. Ability to dilate the vascular bed supplied by LAD, after injections of ACh or NTG, was present both during cooling and rewarming. At 25 degrees C coronary blood flow (LAD) increased from 3 +/- 1 to 9 +/- 1 mL x min(-1) in response to both ACh and NTG. Posthypothermic blood flow increased from 7 +/- 1 to 19 +/- 2 and 20 +/- 3 mL x min(-1) in response to ACh and NTG, respectively. Measured as the percent change from baseline LAD blood flow, the response was not significantly different from the one obtained in prehypothermic hearts. In conclusion, coronary vasodilator function, both endothelium dependent and endothelium independent, is present but not maintained at the same level during cooling to 25 degrees C and rewarming. In spite of the deterioration of cardiac function, no selective defect in the endothelium-dependent response was detected, either during hypothermia or after rewarming.  相似文献   

13.
Belke, Darrell D., Lawrence C. H. Wang, and Gary D. Lopaschuk. Effects of hypothermia on energy metabolism in rat and Richardson's ground squirrel hearts. J. Appl.Physiol. 82(4): 1210-1218, 1997.Glycolysis,glucose oxidation, palmitate oxidation, and cardiac function weremeasured in isolated working hearts from ground squirrels and ratssubjected to a hypothermia-rewarming protocol. Hearts wereperfused initially for 30 min at 37°C, followed by 2 h ofhypothermic perfusion at 15°C, after which hearts were rewarmed to37°C and further perfused for 30 min. Functional recovery in groundsquirrel hearts was greater than in rat hearts after rewarming.Hypothermia-rewarming had a similar general effect on the variousmetabolic pathways in both species. Despite these similarities, totalenergy substrate metabolic rates were greater in rat than groundsquirrel hearts during hypothermia despite a lower level of work beingperformed by the rat hearts, indicating that rat hearts are lessefficient than ground squirrel hearts during hypothermia.After rewarming, energy substrate metabolism recovered completely inboth species, although cardiac work remained depressed in rat hearts.The difference in functional recovery between rat and ground squirrelhearts after rewarming cannot be explained by general differences inenergy substrate metabolism during hypothermia or after rewarming.

  相似文献   

14.
The mechanisms contributing to multiorgan dysfunction during cardiogenic shock are poorly understood. Our goal was to characterize the microcirculatory and mitochondrial responses following ≥10 hours of severe left ventricular failure and cardiogenic shock. We employed a closed-chest porcine model of cardiogenic shock induced by left coronary microembolization (n = 12) and a time-matched control group (n = 6). Hemodynamics and metabolism were measured hourly by intravascular pressure catheters, thermodilution, arterial and organ specific blood gases. Echocardiography and assessment of the sublingual microcirculation by sidestream darkfield imaging were performed at baseline, 2±1 and 13±3 (mean±SD) hours after coronary microembolization. Upon hemodynamic decompensation, cardiac, renal and hepatic mitochondria were isolated and evaluated by high-resolution respirometry. Low cardiac output, hypotension, oliguria and severe reductions in mixed-venous and hepatic O2 saturations were evident in cardiogenic shock. The sublingual total and perfused vessel densities were fully preserved throughout the experiments. Cardiac mitochondrial respiration was unaltered, whereas state 2, 3 and 4 respiration of renal and hepatic mitochondria were increased in cardiogenic shock. Mitochondrial viability (RCR; state 3/state 4) and efficiency (ADP/O ratio) were unaffected. Our study demonstrates that the microcirculation is preserved in a porcine model of untreated cardiogenic shock despite vital organ hypoperfusion. Renal and hepatic mitochondrial respiration is upregulated, possibly through demand-related adaptations, and the endogenous shock response is thus compensatory and protective, even after several hours of global hypoperfusion.  相似文献   

15.
The aim of this study was to evaluate the effect of mild hypothermia on the coagulation-fibrinolysis system and physiological anticoagulants after cardiopulmonary resuscitation (CPR). A total of 20 male Wuzhishan miniature pigs underwent 8 min of untreated ventricular fibrillation and CPR. Of these, 16 were successfully resuscitated and were randomized into the mild hypothermia group (MH, n = 8) or the control normothermia group (CN, n = 8). Mild hypothermia (33°C) was induced intravascularly, and this temperature was maintained for 12 h before pigs were actively rewarmed. The CN group received normothermic post-cardiac arrest (CA) care for 72 h. Four animals were in the sham operation group (SO). Blood samples were taken at baseline, and 0.5, 6, 12, 24, and 72 h after ROSC. Whole-body mild hypothermia impaired blood coagulation during cooling, but attenuated blood coagulation impairment at 72 h after ROSC. Mild hypothermia also increased serum levels of physiological anticoagulants, such as PRO C and AT-III during cooling and after rewarming, decreased EPCR and TFPI levels during cooling but not after rewarming, and inhibited fibrinolysis and platelet activation during cooling and after rewarming. Finally, mild hypothermia did not affect coagulation-fibrinolysis, physiological anticoagulants, or platelet activation during rewarming. Thus, our findings indicate that mild hypothermia exerted an anticoagulant effect during cooling, which may have inhibitory effects on microthrombus formation. Furthermore, mild hypothermia inhibited fibrinolysis and platelet activation during cooling and attenuated blood coagulation impairment after rewarming. Slow rewarming had no obvious adverse effects on blood coagulation.  相似文献   

16.
Twelve patients with severe persistent cardiogenic shock complicating acute myocardial infarction underwent single crossover treatment with intravenous dopamine and salbutamol to determine the more beneficial therapy. Salbutamol (10 to 40 microgram/min) reduced systemic vascular resistance and progressively increased both cardiac index and stroke index. Heart rate increased from 95 to 104 beats/min. Changes in mean arterial pressure and pulmonary artery end-diastolic pressure were small and insignificant. Dopamine infusion at rates of 200 and 400 micrograms/min also increased cardiac index and stroke index. Systemic vascular resistance fell slightly but mean arterial pressure rose from 57 to 65 mm Hg. Heart rate increased from 95 to 105 beats/min. Changes in pulmonary artery end-diastolic pressure were again small and insignificant. Dopamine infusion at 800 micrograms/min caused an appreciable increase in systemic vascular resistance; a further increment in mean arterial pressure was observed, though cardiac index fell slightly. Heart rate and pulmonary artery end-diastolic pressure rose steeply. Salbutamol, a vasodilator, increased cardiac output in patients with cardiogenic shock complicating acute myocardial infarction but did not influence blood pressure. If correction of hypotension is essential dopamine in low doses may be the preferred agent. Doses of 800 microgram/min, which is within the therapeutic range, worsen other manifestations of left ventricular dysfunction.  相似文献   

17.
Isolated lamb hearts perfused with fresh whole blood at 10 and 13 °C in an ex vivo perfusion circuit continuously contracted at a rate of 15 to 20 times/min with a peak left ventricular systolic pressure (LVPSP) up to 70 mm Hg. These contractions persisted for the duration of the hypothermic study, up to three days with no change in vascular resistance. On rewarming to 38 °C, the hearts resumed regular and efficient contractions. Hearts perfused at 5 °C, however, exhibited no electrical or mechanical activity during hypothermic preservation and were uniformly poorly preserved.Quality of heart preservation was improved if, prior to final cooling, hearts were first rewarmed to 38 °C, followed by cooling. Change of the support animal, or interruption of flow of fresh blood into the perfusion circuit, resulted in cessation of ventricular contractions, ventricular fibrillation, and poor organ preservation.  相似文献   

18.
It has been postulated that unsuccessful resuscitation of victims of accidental hypothermia is caused by insufficient tissue oxygenation. The aim of this study was to test whether inadequate O2 supply and/or malfunctioning O2 extraction occur during rewarming from deep/profound hypothermia of different duration. Three groups of rats (n = 7 each) were used: group 1 served as normothermic control for 5 h; groups 2 and 3 were core cooled to 15 degrees C, kept at 15 degrees C for 1 and 5 h, respectively, and then rewarmed. In both hypothermic groups, cardiac output (CO) decreased spontaneously by > 50% in response to cooling. O2 consumption fell to less than one-third during cooling but recovered completely in both groups during rewarming. During hypothermia, circulating blood volume in both groups was reduced to approximately one-third of baseline, indicating that some vascular beds were critically perfused during hypothermia. CO recovered completely in animals rewarmed after 1 h (group 2) but recovered to only 60% in those rewarmed after 5 h (group 3), whereas blood volume increased to approximately three-fourths of baseline in both groups. Metabolic acidosis was observed only after 5 h of hypothermia (15 degrees C). A significant increase in myocardial tissue heat shock protein 70 after rewarming in group 3, but not in group 2, indicates an association with the duration of hypothermia. Thus mechanisms facilitating O2 extraction function well during deep/profound hypothermia, and, despite low CO, O2 supply was not a limiting factor for survival in the present experiments.  相似文献   

19.
The haemodynamic effects of a simultaneous infusion of salbutamol and nitroprusside were measured in 20 patients with acute myocardial infarction and severe left ventricular failure. Six patients also had clinical manifestations of cardiogenic shock. Ten patients received salbutamol first with the subsequent addition of nitroprusside; in the other 10 patients nitroprusside was infused first. Salbutamol was infused at a constant rate of 20 micrograms/min in all patients, while the dose of nitroprusside, which averaged 51.25 micrograms/min, was adjusted to reduce left ventricular filling pressure (measured as pulmonary artery end-diastolic pressure) to approximately 15 mm Hg with reference to sternal angle. Cardiac index increased in all patients from a mean of 1.8 to 2.6 l/min/m2 while pulmonary artery end-diastolic pressure fell significantly from 24 to 16 mm Hg. The adverse effects were small in most patients: heart rate did not increase significantly and systolic arterial pressure fell on average from 112 to 96 mm Hg. Ten of the 20 patients survived to leave hospital. Nitroprusside accounted for most of the fall in filling pressure irrespective of treatment sequence, whereas both drugs contributed to the augmented cardiac output. The haemodynamic benefits of this combined regimen were considerably greater than those achieved by either drug alone. Thus salbutamol and nitroprusside have synergistic effects which influence favourably the two principal manifestations of left ventricular dysfunction after extensive myocardial infarction.  相似文献   

20.
The haemodynamic effects of salbutamol infusions at rates of 10,20, and 40 micrograms/min were measured in 11 patients with acute myocardial infarction complicated by left ventricular failure. Four patients also had cardiogenic shock. Consistent increases were observed in cardiac outputs at all doses (up to 56% at 40 micrograms/min), while the mean systemic arterial pressure fell slightly (average 5 mm Hg), implying a reduction in peripheral vascular resistance. Changes in right atrial pressure and indirect left atrial pressure (measured as pulmonary artery end-diastolic pressure) were small and not significant. Analysis of data from individual patients showed that the greatest increment in cardiac output was reached at 10 micrograms/min in two cases, 20 microgram/min in three, and 40 micrograms/min in the remaining six. Heart rate at these doses increased by an average of only 10 beats/min. Salbutamol failed to reduce left ventricular filling pressure and cannot be recommended for the treatment of pulmonary oedema in acute myocardial infarction. The increase in cardiac output, however, was considerable, so that the drug may be important in the management of low-output states. This action is probably a result of peripheral arteriolar dilatation (itself a result of beta 2-adrenoreceptor stimulation) and is achieved with little alteration in the principal determinants of myocardial oxygen requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号