首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
For more than 30 years, expression divergence has been considered as a major reason for retaining duplicated genes in a genome, but how often and how fast duplicate genes diverge in expression has not been studied at the genomic level. Using yeast microarray data, we show that expression divergence between duplicate genes is significantly correlated with their synonymous divergence (KS) and also with their nonsynonymous divergence (KA) if KA ≤ 0.3. Thus, expression divergence increases with evolutionary time, and KA is initially coupled with expression divergence. More interestingly, a large proportion of duplicate genes have diverged quickly in expression and the vast majority of gene pairs eventually become divergent in expression. Indeed, more than 40% of gene pairs show expression divergence even when KS is ≤ 0.10, and this proportion becomes >80% for KS > 1.5. Only a small fraction of ancient gene pairs do not show expression divergence.  相似文献   

4.
5.
Expression divergence of duplicate genes is widely believedto be important for their retention and evolution of new function,although the mechanism that determines their expression divergenceremains unclear. We use a genetical genomics approach to exploredivergence in genetical control of yeast duplicate genes createdby a whole-genome duplication that occurred about 100 MYA andthose with a younger duplication age. The analysis reveals thatduplicate genes have a significantly higher probability of sharingcommon genetic control than pairs of singleton genes. The expressionquantitative trait loci (eQTLs) have diverged completely fora high proportion of duplicate pairs, whereas a substantiallylarger proportion of duplicates share common regulatory motifsafter 100 Myr of divergent evolution. The similarity in bothgenetical control and cis motif structure for a duplicate pairis a reflection of its evolutionary age. This study revealsthat up to 20% of variation in expression between ancient duplicategene pairs in the yeast genome can be explained by both cismotif divergence (8%) and by trans eQTL divergence (10%). Initially,divergence in all 3 aspects of cis motif structure, trans-geneticalcontrol, and expression evolves coordinately with the codingsequence divergence of both young and old duplicate pairs. Thesefindings highlight the importance of divergence in both cismotif structure and trans-genetical control in the diverse setof mechanisms underlying the expression divergence of yeastduplicate genes.  相似文献   

6.
7.
8.
9.
10.
Summary A 2.1-kb SStI fragment including the rp49 gene and the 3 end of the -serendipity gene has been cloned and sequenced in Drosophila pseudoobscura. rp49 maps at region 62 on the tip of chromosome II of this species. Both the coding and flanking regions have been aligned and compared with those of D. subobscura. There is no evidence for heterogeneity in the rate of silent substitution between the rp49 coding region and the rate of substitutions in flanking regions, the overall silent divergence per site being 0.19. Noncoding regions also differ between both species by different insertions/deletions, some of which are related to repeated sequences. The rp49 region of D. pseudoobscura shows a strong codon bias similar to those of D. subobscura and D. melanogaster. Comparison of the rates of silent (K S ) and nonsilent (K a ) substitutions of the rp49 gene and other genes completely sequenced in D. pseudoobscura and D. melanogaster confirms previous results indicating that rp49 is evolving slowly both at silent and nonsilent sites. According to the data for the rp49 region, D. pseudoobscura and D. subobscura lineages would have diverged some 9 Myr ago, if one assumes a divergence time of 30 Myr for the melanogaster and obscura groups.Offprint requests to: C. Segarra  相似文献   

11.
12.
Phenotypic variation can arise from differences in the protein coding sequence and in the regulatory elements. However, little is known about the contribution of regulatory difference to the expression divergence, especially the cis and trans regulatory variation to the expression divergence in intraspecific populations. In this study, we used two different yeast strains, BY4743 and RM11‐1a/α, to study the regulatory variation to the expression divergence between BY and RM under oxidative stress condition. Our results indicated that the expression divergence of BY and RM is mainly due to trans regulatory variations under both normal and oxidative stress conditions. However, cis regulatory variation seems to play a very important role in oxidative stress response in yeast because 36% of genes showed an increase in cis regulatory variation effect compared with 13% of genes that showed an increase in trans regulatory variation effect after oxidative stress. Our data also indicated that genes located on the longer arm of the chromosomes are more susceptible to cis variation effect under oxidative stress than genes on the shorter arm of the chromosomes.  相似文献   

13.
14.
15.
Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative genetic analyses suggest that expression is controlled by only a few loci with correlations among some genes. Genetic mapping identifies clear evidence of trans‐acting factors in two chromosomal regions that contribute to differences in opsin expression as well as one cis‐regulatory region. Therefore, both cis and trans regulation are important. The simple genetic architecture suggested by these results may explain why opsin gene expression is evolutionarily labile, and why similar patterns of expression have evolved repeatedly in different lineages.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号