共查询到20条相似文献,搜索用时 15 毫秒
1.
Valerio Avitabile Martin Herold Gerard B. M. Heuvelink Simon L. Lewis Oliver L. Phillips Gregory P. Asner John Armston Peter S. Ashton Lindsay Banin Nicolas Bayol Nicholas J. Berry Pascal Boeckx Bernardus H. J. de Jong Ben DeVries Cecile A. J. Girardin Elizabeth Kearsley Jeremy A. Lindsell Gabriela Lopez‐Gonzalez Richard Lucas Yadvinder Malhi Alexandra Morel Edward T. A. Mitchard Laszlo Nagy Lan Qie Marcela J. Quinones Casey M. Ryan Slik J. W. Ferry Terry Sunderland Gaia Vaglio Laurin Roberto Cazzolla Gatti Riccardo Valentini Hans Verbeeck Arief Wijaya Simon Willcock 《Global Change Biology》2016,22(4):1406-1420
We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108 , 2011, 9899; Nature Climate Change, 2 , 2012, 182) into a pan‐tropical AGB map at 1‐km resolution using an independent reference dataset of field observations and locally calibrated high‐resolution biomass maps, harmonized and upscaled to 14 477 1‐km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South‐East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha?1 vs. 21 and 28 Mg ha?1 for the input maps). The fusion method can be applied at any scale including the policy‐relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country‐specific reference datasets. 相似文献
2.
Ervan Rutishauser Stuart J. Wright Richard Condit Stephen P. Hubbell Stuart J. Davies Helene C. Muller‐Landau 《Global Change Biology》2020,26(3):1485-1498
Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above‐ground biomass (EAGB) stocks, productivity, and mortality in old‐growth tropical forests. These increases could reflect a shift in forest functioning due to global change and/or long‐lasting recovery from past disturbance. We introduce a novel approach to disentangle the relative contributions of these mechanisms by decomposing changes in whole‐plot biomass fluxes into contributions from changes in the distribution of gap‐successional stages and changes in fluxes for a given stage. Using 30 years of forest dynamic data at Barro Colorado Island, Panama, we investigated temporal variation in EAGB fluxes as a function of initial EAGB (EAGBi) in 10 × 10 m quadrats. Productivity and mortality fluxes both increased strongly with initial quadrat EAGB. The distribution of EAGB (and thus EAGBi) across quadrats hardly varied over 30 years (and seven censuses). EAGB fluxes as a function of EAGBi varied largely and significantly among census intervals, with notably higher productivity in 1985–1990 associated with recovery from the 1982–1983 El Niño event. Variation in whole‐plot fluxes among census intervals was explained overwhelmingly by variation in fluxes as a function of EAGBi, with essentially no contribution from changes in EAGBi distributions. The high observed temporal variation in productivity and mortality suggests that this forest is very sensitive to climate variability. There was no consistent long‐term trend in productivity, mortality, or biomass in this forest over 30 years, although the temporal variability in productivity and mortality was so strong that it could well mask a substantial trend. Accurate prediction of future tropical forest carbon budgets will require accounting for disturbance‐recovery dynamics and understanding temporal variability in productivity and mortality. 相似文献
3.
We compared litter pools of more than 1,000 forests differing in tree species diversity over a large scale in Catalonia (NE Spain). Monospecific forests always had smaller litter pools than mixed (from 2 to 5 tree species) forests. Whether there was a positive effect beyond two species mixtures depended on the species and functional identity of the dominant tree species. In sclerophyllous forests the positive effect of diversity was a step-function from one to more species. However, in conifers, litter pools increased constantly with tree diversity. The identity of the dominant tree species and functional type had also a significant effect on litter pools. For instance, forests dominated by sclerophyllous tree species had larger litter pools than forests dominated by deciduous and conifer tree species. When other forest structure parameters (i.e. tree basal area, wood production, successional stage, shrub cover and leaf area index) and environmental factors (i.e. mean annual temperature, mean annual precipitation, annual evapotranspiration and hillside position) where included in the analysis only leaf area index, basal area, wood production and mean temperature influenced litter pools positively. Our analysis emphasizes that at the regional scale, the litter compartment can be as influenced by biodiversity components as by other forest structure and climate components. In mixed forests, species and functional identity of the trees determine whether litter pools increase with tree diversity. 相似文献
4.
5.
Ebenezer D. Djagbletey Vincent Logah Nana Ewusi‐Mensah Henry O. Tuffour 《Biotropica》2018,50(2):225-233
Savannas are widespread in sub‐Saharan Africa (SSA) and play a major role in the global carbon balance. Extensive quantification of savanna carbon stocks in SSA will therefore contribute to better accounting of the global carbon budget in the era of climate change. In this study, we investigated the spatial distribution of carbon stocks of different soil fractions and aboveground biomass within three forest reserves in the Guinea savanna zone of Ghana. Soil carbon stocks (SCSs) ranged from 4.80 to 12.61 Mg C/ha in surface soils (0–10 cm depth). Higher SCSs were associated with the silt +clay fraction than microaggregates and small macroaggregates in all three reserves. Relative to the dominant tree species (Vitellaria paradoxa), the highest SCSs were recorded under the sub‐canopy (SC), drip line (DL), and interspace (2 * SC + DL) zones for the Klupene, Sinsablegbinni, and Kenikeni forest reserves, respectively. The highest tree carbon stock was 60.01 Mg C/ha in Kenikeni. Sinsablegbinni had an average stock of 26.74 Mg C/ha and had the highest tree density. Average carbon capture by a single tree ranged from 0.04 to 0.34 Mg C. Aboveground grass carbon stock ranged from 0.08 to 0.47 Mg C/ha, while the belowground carbon stock ranged from 0.03 to 0.44 Mg C/ha. Accumulation of carbon in the aboveground grass biomass was greater at Klupene with low forest cover. 相似文献
6.
Erika Berenguer Joice Ferreira Toby Alan Gardner Luiz Eduardo Oliveira Cruz Aragão Plínio Barbosa De Camargo Carlos Eduardo Cerri Mariana Durigan Raimundo Cosme De Oliveira Junior Ima Célia Guimarães Vieira Jos Barlow 《Global Change Biology》2014,20(12):3713-3726
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long‐term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation. 相似文献
7.
Barlow J Peres CA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1498):1787-1794
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm. 相似文献
8.
Impact of woody encroachment on soil organic carbon storage in the Lopé National Park,Gabon 下载免费PDF全文
Tommaso Chiti Vianet Mihindou Kathryn J. Jeffery Yadvinder Malhi Fabiane L. De Oliveira Lee J. T. White Riccardo Valentini 《Biotropica》2017,49(1):9-12
This study quantifies changes in soil organic carbon (SOC) stock as a result of woody encroachment on savannas. Changes in SOC stocks occur below 30 cm depth, indicating the subsoil as the principal compartment contributing to SOC sequestration, and suggesting the need to consider the entire profile (0–100 cm) to thoroughly assess the effect of woody encroachment on SOC stocks. 相似文献
9.
Abstract We examined variation in bird species richness, abundance and guild composition along an agricultural gradient in New Guinea, and looked for any additive influence of habitat heterogeneity on these variables. The study was based on a grid of survey plots, six plots wide and 24 plots long with the long axis running from a settlement 2.4 km through active and abandoned agricultural plots towards a large area of forest. Each circular survey plot (25 m radius) was assigned to a broad habitat type, ten habitat measures taken, and birds counted for 1 h in each plot. Principal component analysis (PCA) habitat axis 1 described an axis of decreasing forest alteration (larger trees, greater tree densities, fuller canopy) that was positively correlated with distance from the settlement. Bird richness and abundance were highest at intermediate disturbance levels (plots with mid‐range axis 1 scores). Proportions of insectivores and frugivores increased with decreasing forest alteration, while proportions of nectarivores decreased. We calculated three measures of habitat heterogeneity by comparing each plot's PCA score to those of eight neighbouring plots (50–110 m away). These measures reflected how different the plot was to its neighbours, how variable the habitat was around the plot, and the degree to which the plot bordered less disturbed forest. We related these measures to plot bird variable scores independently, and to residuals following regressions of bird scores against PCA scores. Heterogeneity measures had no significant influence on abundance or richness measures, but there were greater proportions of frugivores in plots showing a given degree of habitat alteration if they bordered more pristine habitat. While we readily identified differences in bird communities along the agricultural gradient, the influences of habitat heterogeneity were not striking for birds at this fine scale. 相似文献
10.
11.
Christian Moupela Jean‐Louis Doucet Kasso Daïnou Nikki Tagg Nils Bourland Cédric Vermeulen 《African Journal of Ecology》2014,52(1):88-96
The African walnut (Coula edulis) is a tree species of African evergreen forests, the seeds of which are collected and traded by African people. Many animal species consume African walnut diaspores; however, their roles as dispersers or predators have yet to be clarified. In this study, we present observations conducted in two different habitats of a Gabonese region over a 3‐year period. The originality of this research resides in the combination of three complementary approaches: (i) the use of camera‐traps (ii) the exploration of land rodent burrows and (iii) the examination of elephant dung. In total, 408 camera‐trap photographs have shown seven animal species involved in the dispersal/predation of C. edulis. Among these seven frugivorous species, the bush pig was found to be the main consumer and predator of seeds. Land rodents (Muridae) are potential predators, as they damaged the seeds and buried them deep in the soil. They may also play a role in the regeneration process as a result of the loss of seeds during transportation. Finally, no seeds appeared to emerge intact from elephant faeces. These results indicate that the natural regeneration rate of this tree species is low, unless other complex mechanisms are involved. 相似文献
12.
Fabio A. R. Matos Luiz F. S. Magnago Carlos Aquila Chan Miranda Luis F. T. de Menezes Markus Gastauer Nathlia V. H. Safar Carlos E. G. R. Schaefer Mnica P. da Silva Marcelo Simonelli Felicity A. Edwards Sebastio V. Martins Joo A. A. Meira‐Neto David P. Edwards 《Global Change Biology》2020,26(2):509-522
Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above‐ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity. 相似文献
13.
Entomogenous fungi in tropical forest ecosystems: an appraisal 总被引:2,自引:0,他引:2
H. C. EVANS 《Ecological Entomology》1982,7(1):47-60
Abstract. 1. Species of the genus Cordyceps (Ascomycotina; Clavicipitales) are the commonest fungi encountered on arthropods in tropical forests.
2. The asexual states of Cordyceps may occur in conjunction with or separately from the perfect state and are classified in the genera Hirsutella, Hymenostilbe, Nomuraea, Paecilomyces and Verticillium of the imperfect fungi (Deuteromycotina; Moniliales).
3. Most Cordyceps species have a restricted host range and this rigid host specificity, at the generic or tribal level, is especially evident in ant-fungal associations.
4. Pathogenicity was not tested but circumstantial evidence is presented which supports the view that Cordyceps species are primary pathogens of arthropods.
5. Observations of living, infected ants suggest that behavioural patterns are radically altered, possibly altruistically orientated.
6. It is thought that entomogenous fungi are involved in the regulation of arthropod populations and may help to maintain stability in tropical forest ecosystems.
7. The value of these organisms to man may be in the metabolites they produce rather than in their direct usage as biological control agents of insect pests. 相似文献
2. The asexual states of Cordyceps may occur in conjunction with or separately from the perfect state and are classified in the genera Hirsutella, Hymenostilbe, Nomuraea, Paecilomyces and Verticillium of the imperfect fungi (Deuteromycotina; Moniliales).
3. Most Cordyceps species have a restricted host range and this rigid host specificity, at the generic or tribal level, is especially evident in ant-fungal associations.
4. Pathogenicity was not tested but circumstantial evidence is presented which supports the view that Cordyceps species are primary pathogens of arthropods.
5. Observations of living, infected ants suggest that behavioural patterns are radically altered, possibly altruistically orientated.
6. It is thought that entomogenous fungi are involved in the regulation of arthropod populations and may help to maintain stability in tropical forest ecosystems.
7. The value of these organisms to man may be in the metabolites they produce rather than in their direct usage as biological control agents of insect pests. 相似文献
14.
Daniela Requena Suarez Danaë M. A. Rozendaal Veronique De Sy Oliver L. Phillips Esteban Alvarez‐Dvila Kristina Anderson‐Teixeira Alejandro Araujo‐Murakami Luzmila Arroyo Timothy R. Baker Frans Bongers Roel J. W. Brienen Sarah Carter Susan C. Cook‐Patton Ted R. Feldpausch Bronson W. Griscom Nancy Harris Bruno Hrault Eurídice N. Honorio Coronado Sara M. Leavitt Simon L. Lewis Beatriz S. Marimon Abel Monteagudo Mendoza Justin Kassi N'dja Anny Estelle N'Guessan Lourens Poorter Lan Qie Ervan Rutishauser Plinio Sist Bonaventure Sonk Martin J. P. Sullivan Emilio Vilanova Maria M. H. Wang Christopher Martius Martin Herold 《Global Change Biology》2019,25(11):3609-3624
As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (?AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ?AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old‐growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ?AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old‐growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ?AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old‐growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ?AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha?1 year?1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha?1 year?1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha?1 year?1 in old‐growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ?AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research. 相似文献
15.
The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates 总被引:2,自引:0,他引:2
The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land‐use change. In the present contribution several estimates of forest biomass are compared for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. Three questions were posed: First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? The answer to the first two questions is that estimates of biomass for Brazil's Amazonian forests (including dead and belowground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modelling of forest recovery following observed stand‐replacing disturbances, and estimation of aboveground biomass from airborne or satellite‐based instruments sensitive to the vertical structure plant canopies. 相似文献
16.
Sassan Saatchi Joseph Mascaro Liang Xu Michael Keller Yan Yang Paul Duffy Fernando Espírito‐Santo Alessandro Baccini Jeffery Chambers David Schimel 《Global Ecology and Biogeography》2015,24(5):606-610
In a recent paper (Mitchard et al. 2014, Global Ecology and Biogeography, 23 , 935–946) a new map of forest biomass based on a geostatistical model of field data for the Amazon (and surrounding forests) was presented and contrasted with two earlier maps based on remote‐sensing data Saatchi et al. (2011; RS1) and Baccini et al. (2012; RS2). Mitchard et al. concluded that both the earlier remote‐sensing based maps were incorrect because they did not conform to Mitchard et al. interpretation of the field‐based results. In making their case, however, they misrepresented the fundamental nature of primary field and remote‐sensing data and committed critical errors in their assumptions about the accuracy of research plots, the interpolation methodology and the statistical analysis. By ignoring the large uncertainty associated with ground estimates of biomass and the significant under‐sampling and spatial bias of research plots, Mitchard et al. reported erroneous trends and artificial patterns of biomass over Amazonia. Because of these misrepresentations and methodological flaws, we find their critique of the satellite‐derived maps to be invalid. 相似文献
17.
Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species 总被引:17,自引:0,他引:17
Kristiina A. Vogt Daniel J. Vogt Peter A. Palmiotto Paul Boon Jennifer O'Hara Heidi Asbjornsen 《Plant and Soil》1995,187(2):159-219
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP. 相似文献
18.
Carabid beetles were sampled at five sites, ranging from 1500 m to 3400 m, along a 15 km transect in the cloud forest of Manu National Park, Perú. Seasonal collections during a one year period yielded 77 morphospecies, of which 60% are projected to be undescribed species. There was a significant negative correlation between species richness and altitude, with the number of carabid species declining at the rate of one species for each 100 m increase in altitude. The majority of species (70.1 %) were restricted to only one altitudinal site and no species was found at more than three of the five altitudinal sites. Only one genus, Pelmatellus (Tribe Harpalini), was found at all five sites. Active (hand) collections yielded approximately twice as many species per individuals collected than passive (pitfall trap) collections. This study is the first systematic sampling ofcarabid beetles of a high altitude gradient in the cloud forests of southeastern Perú and supports the need to conserve the zone of extremely high biodiversity present on the eastern slopes of the Peruvian Andes. 相似文献
19.
中国热带森林植被类型研究历史和划分探讨 总被引:1,自引:0,他引:1
热带森林是我国森林植被的重要组成部分,明确其森林植被类型分类对于生物多样性维持机制研究和保护管理等都具有重要意义。该文以中国热带森林植被分类研究中存在的问题为出发点,通过阐述我国各省区植被类型分类的研究历史,在综合考虑多种生物和非生物影响因素的基础上,提出一个新的热带森林植被类型分类框架以供探讨。结果表明:(1)尽管针对我国热带森林的分布范围和群落特征等都已开展了诸多研究,但对我国热带森林植被类型的划分依据和分类体系仍存在争议。(2)尽管我国的热带森林都处于季风气候区带内,但许多热带地区的森林植被类型并不只是受季风影响,而是气候带、关键气候因子、地形、土壤反馈和物种适应等多种因素共同作用的结果。(3)我国的热带森林植被包括5个植被型,即非典型性热带雨林、热带季雨林、热带山地雨林、热带山顶苔藓矮林(热带云雾林)和热带针叶林,其中热带季雨林植被型包含4种植被亚型[热带落叶季雨林、热带半落叶(半常绿)季雨林、热带常绿季雨林和热带石灰岩(石山)季雨林]。(4)阐明了上述热带森林植被型和植被亚型在我国各省区的分布情况,并提出未来有必要对人工恢复后的热带森林进行评估和植被类型划分。综上所述,该文提出一个新的热带森林植被类型分类框架,以期为今后基于不同地区开展热带森林比较研究提供参考。 相似文献
20.
热带森林植被生态恢复研究进展 总被引:3,自引:2,他引:3
热带森林是地球上生物多样性最高和生态功能最为强大的植被类型之一,在维护全球生态平衡中起着至关重要的作用,同时也为人类社会提供着多种多样的物质资源和生态系统服务。然而热带森林是目前生物多样性消失最快和生态功能退化最为严重的生态系统之一,如何有效地保护现存的热带森林不再进一步退化,以及如何使已经退化的生态系统尽快得到恢复是生态学工作者面临的重要议题。不同方式、规模和强度的干扰对热带林的破坏程度及其以后的恢复过程产生的影响不同。除少数大型自然干扰事件外,采伐、刀耕火种、农业开发用地等人为干扰是造成当前热带森林植被大面积退化的主要原因。多种干扰交互作用、杂草与外来物种入侵、退化植被和土壤状况、残存植被组分及土壤种子库、退化植被周围的景观格局以及全球气候变化等因素都能够影响热带森林植被恢复的速度和方向。基于功能群的研究思想将可能为物种丰富的热带森林植被恢复的研究提供一个全新途径。 相似文献