首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study includes an evaluation of the effect of protection of a grazing ecosystem on the nutrient concentration and uptake in the organs of four annual species of non-saline depressions in the western Mediterranean regionof Egypt.The concentration of macro- and micronutrients in different organs became lower due to the increase in biomass of individuals with protection. The maximum uptake of nutrients occurred during the early vegetative stage, except for a few cases in which the uptake in some species reached two peaks, one in the early vegetative stage and the other in the reproductive stage.The efficiency of the selected annual species in uptaking and accumulating nutrients was compared with rates of uptake of nutrients and amounts of nutrients accumulated in tissues of two species representing other life forms. The annuals and perennial herbs (ephemeroids) are in general more efficient in uptaking and accumulating nutrients in their tissues than perennial shrubs.  相似文献   

2.
Levels of specialization of the pollination systems were evaluated in 155 plant species from the Venezuelan Central Plain. In all, 29 pollination systems were found, resulting from various combinations of nine pollen‐vector types or pollinating agent classes. The number of pollen‐vector types composing a pollination system ranged from one to five. Ninety‐one species were pollinated by only a single pollen‐vector type; the frequency of pollination systems fell monotonically with increasing number of constituent pollen‐vector types. Some 30–40 per cent of bee‐, moth‐, beetle‐ and bat‐pollinated species were pollinated by that group of vectors alone. The highest incidence of co‐occurrence between pollen‐vector types was found for the combinations fly–wasp, butterfly–wasp, butterfly–fly, and to a lesser extent bird–butterfly, bat–bird, bat–moth and butterfly–moth. The average number of pollen‐vector types per plant species was significantly higher for trees and shrubs than for lianas and perennial herbs. The distribution of polyphily, oligophily, monophily and anemophily was significantly associated with life form and habitat. The relative frequencies of these types varied least through the year in the forest‐savannah ecotone and in the vegetation as a whole, reflecting the combination of life forms. There were significantly fewer night‐pollinated than day‐pollinated species. Day‐pollinated species tended to be polyphilous, and most of the night‐pollinated species were monophilous or oligophilous. Time of pollination activity was related to habitat. The relative importance of night pollination among life forms decreased from trees to perennial herbs. Plant species exclusively pollinated during the night reached a peak during the rainy season (May to November) for trees, lianas and perennial herbs. The data as a whole show that the relative frequency of polyphily, oligophily, monophily and anemophily, and the time of pollination activity are influenced by community structure and plant species richness, and may change from season to season. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 1–16.  相似文献   

3.
In theory, unisexual taxa have an advantage over ecologically similar bisexual species because unisexuals produce twice as many daughters and, thus, should quickly outcompete coexisting bisexuals in any given population. For sperm‐dependent unisexual (gynogenetic) species, stable coexistence with their bisexual sperm donors can be postulated if male mate choice puts unisexual females at a disadvantage through sperm limitation, thus halving their reproductive output compared to bisexuals (‘behavioural regulation hypothesis’). We tested for a potential life‐history signature of male mate choice in a system of coexisting bisexual sailfin mollies (Poecilia latipinna) and gynogenetic Amazon mollies (Poecilia formosa). Specifically, we gave P. latipinna males an opportunity to freely interact (and mate) with both types of females and, after 25 days, quantified the proportion of (1) females with sperm in their genital tract and (2) pregnant females. A higher proportion of P. latipinna females (53.7%) had sperm in their genital tract (compared to only 25.9% in P. formosa), corroborating a previous study on wild‐caught fish. This translated into a higher frequency (42.6%) of P. latipinna females being pregnant (compared to 29.6% in P. formosa); however, among pregnant females, no significant differences between species in reproductive life‐history traits (such as offspring number or size) were uncovered. Hence, although the findings of the present study confirm that male discrimination against unisexual females leads to reduced reproductive output in unisexuals, the observed magnitude of differences in targeted life histories between the two types of females is unlikely to be the sole factor regulating stable coexistence in this system. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 598–606.  相似文献   

4.
We studied the soil seed bank in a possible scenario of fire regime shift and asked: (1) Does high fire frequency impact the density of seeds stored, species richness and evenness? (2) Overall, does high fire frequency produce changes in the presence–absence and abundance of species? The study was implemented in a Mediterranean Basin ecosystem in plots with increasing fire frequency (unburned, burned once and burned twice in the last 66 years). The number of seeds increased with fire frequency for all life forms (shrub, scrub, perennial forb, annual forb and perennial graminoid). Species richness of annual forbs also increased. Evenness of shrubs diminished because the number of seeds in all the species decreased, except C. albidus, which increased. Overall, differences in the abundance of species were found, mainly by depleting shrubs and increasing forbs. There were no differences in the presence–absence data. In conclusion, high fire frequencies act as a filtering factor for species of a larger size and advanced maturity age. In contrast, life forms of small size and rapid onset of reproductive maturity can be enhanced. This community conversion from woody to herbaceous soil seed banks is fundamental to identify vegetation changes in future regimes of high fire frequency.  相似文献   

5.
Shrub encroachment occurring worldwide in savannas and grasslands has commonly been hypothesized to result from anthropogenically altered environments. Two disturbance‐based approaches to restoration have involved: (1) application of selective herbicides to reduce density/cover of shrubs; (2) reinstatement of natural fire regimes to generate environmental conditions favoring herbaceous species. We studied short‐term responses of native shrubs, vines, and grasses in a Louisiana pine savanna to herbicides followed by a prescribed fire and fire alone. Plots established in the summer, 2013, were hand‐sprayed in the fall with Imazapyr and Triclopyr, Triclopyr alone, or no herbicide, then prescribed burned the following spring. Numbers of species of shrubs and vines at scales of 1 and 100 m2, numbers of stems and regrowth of stems produced by six common species of shrubs, and the number of flowering culms of perennial C4 grasses were assessed postfire in 2014. Compared with fire alone, herbicides followed by fire resulted in (1) small reductions in species richness of shrubs and no effects on vines, (2) fewer stems comprising shrub genets, but similar postfire regrowth of resprouting shrub stems, and (3) fewer flowering culms of C4 grasses. Underground storage organs of savanna shrubs and vines survived both aboveground disturbances. Thus, single applications of herbicides followed by fires reduced, but did not reverse shrub encroachment and negatively affected grasses. Because effects of herbicides overrode those of prescribed fires, these disturbances did not act synergistically, suggesting that reinstating natural fire regimes should be a priority in restoration of savannas and grasslands.  相似文献   

6.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

7.
Abstract Native vegetation has been destroyed or dramatically modified throughout agricultural regions of southern Australia. Extensive restoration of native perennial vegetation is likely to be crucial in these areas for the persistence of native plant and animal species, to ameliorate dryland salinity and soil degradation, and to maintain long‐term agricultural production. The long‐term resilience of these systems will be dependent on the ability of key functional taxa, such as perennial shrubs, to recruit and persist. In this study, we examine the factors limiting establishment of two perennial shrubs in formerly cropped land, the rare Maireana rohrlachii and the common Maireana decalvans. Field and laboratory observations suggest that establishment of both species is not limited by life‐history traits following cultivation. Both species established and persisted under varying levels of plant competition. Similarities existed between species in their initial germination rates. Weak differences were found between species in the growth and survival rates under different levels of competition. The main difference between the two species was in the decline of germinability of fruits with increasing fruit age. From the data, it is difficult to determine what factors limit the establishment of perennial shrubs in these landscapes. The main hypothesis that can be advanced is that establishment of shrub species appears to be limited by propagule availability and this is likely to be a function of past and present grazing management rather than cultivation per se. Further investigation of these land‐use practices may give greater insight into the factors affecting the establishment of this life form across these landscapes.  相似文献   

8.
Causal explanations for host reproductive phenotypes influenced by parasitism fit into three broad evolutionary models: (1) non‐adaptive side effect; (2) adaptive parasitic manipulation; and (3) adaptive host defence. This study demonstrates fecundity compensation, an adaptive non‐immunological host defence, in the three‐spined stickleback fish (Gasterosteus aculeatus) infected by the diphyllobothriidean cestode Schistocephalus solidus. Both infected and uninfected female sticklebacks produced egg clutches at the same age and size. The reproductive capacity of infected females decreased rapidly with increased parasite : host body mass ratio. Body condition was lower in infected females than uninfected females and decreased with increasing parasite : host mass ratio. Females with clutches had greater body condition than those without clutches. A point biserial correlation showed that there was a body condition threshold necessary for clutch production to occur. Host females apparently had the capacity to produce egg clutches until the prolonged effects of nutrient theft by the parasite and the drain on resources from reproduction precluded clutch formation. Clutch mass, adjusted for female body mass, did not differ significantly between infected and uninfected females. Infected females apparently maintained the same level of reproductive allotment (egg mass as proportion of body mass) as uninfected females. Infected females produced larger clutches of smaller eggs than uninfected females, revealing a trade‐off between egg mass and egg number, consistent with the fecundity compensation hypothesis. The rapid loss of reproductive capacity with severity of infection probably reflects the influence of the parasite combined with a trade‐off between current and future reproduction in the host. Inter‐annual differences in reproductive performance may have reflected ecological influences on host pathology and/or intra‐annual seasonal changes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
The breeding systems, reproductive efficacies and population densities of 75 species of trees, shrubs, perennial herbs and vines in a montane tropical cloud forest in Venezuela are investigated. 56.96% and 44.32% of the trees, versus the other life forms considered, respectively possess obligate outbreeding mechanisms. Two shrubs are non-pseudogamous apomicts. The percentage of dioecy among tree species (31%) is among the highest recorded in tropical forests. Reproductive efficacy is similar under all breeding systems in the forest interior. Obligately outbred taxa are slower recolonizers of a disturbed border as compared with non-obligate outbreeders. Explanations are advanced for the high incidence of dioecy combined with a low level of self-incompatibility among hermaphroditic species. It is concluded that the breeding system spectrum reflects an unpredictable pollination pattern, rather than insufficient pollinator servicing.  相似文献   

10.
Aim To explore the variation in species richness along a subtropical elevation gradient, and evaluate how climatic variables explain the richness of the different life forms such as trees, shrubs, climbers, herbs and ferns. Location The study was made in a subtropical to warm temperate region in the south‐eastern part of Nepal, between 100 and 1500 m above sea level (a.s.l.). Methods The number of species was counted in six plots (50 × 20 m) in each of the 15 100 m elevation bands covering the main physiognomic structures along an imaginary transect. Each species recorded was assigned to a life form. Potential evapotranspiration (PET, i.e. energy), mean annual rainfall (MAR), and their ratio (MI = moisture index) were evaluated as explanatory variables by means of generalized linear models (GLM). Each variable was tested individually, and in addition MAR and PET were used to test the water‐energy dynamics model for each life form. Results The richness of herbaceous species, including herbaceous climbers, was unrelated to any of the climate variables. PET was strongly negatively correlated with elevation, and the following relationships were found between increasing PET and richness: (i) shrubs, trees and total species (sum of all life forms) showed unimodal responses (ii) ferns decreased monotonically, and (iii) woody climbers increased monotonically. Richness of all woody groups increased monotonically with MAR and MI. The water‐energy dynamics model explained 63% of the variation in shrubs, 67% for trees and 70% for woody species combined. Main conclusions For the various herbaceous life forms (forbs, grasses, and herbaceous climbers) we found no significant statistical trends, whereas for woody life forms (trees, shrubs, and woody climbers) significant relationships were found with climate. E.M. O’Brien's macro‐scale model based on water‐energy dynamics was found to explain woody species richness at a finer scale along this elevational‐climatic gradient.  相似文献   

11.
Soil resource availability varies across seasons and soil layers. Both plant phenology, i.e. the sequence of growth and developmental changes along the year, and plant life form, i.e. the life cycle, distribution of roots, and longevity of leaves, determine the ability to use resources. The phenological heterogeneity within and among life forms of a single community may reveal key features of community structure, such as temporal niche segregation within life forms or convergence of phenological and life form patterns. We described the phenological patterns of most species of a Patagonian steppe composed of four life forms: perennial grasses, shrubs, annual herbs, and perennial herbs. By applying standard multivariate analysis techniques, we classified the species into three phenological groups and analysed the variation among groups and life forms. One phenological group, composed exclusively by grasses, had higher autumn-winter phenological activity than the other two groups. The non-grass groups differed in the date of beginning of vegetative growth and ending of the reproductive growth, one of the groups being earlier than the other. However, the three groups coincided at the phenophase of floral buds and open flowers, which occurred around the time of the maximum rate of phenological change and maximum fraction of photosynthetically active radiation being intercepted by the entire community. Phenological groups and life forms only partially overlapped: grasses and annual herbs belonged to individual phenological groups, whereas shrubs and perennial herbs spread across two groups. Thus, some life forms of the community were strictly related to a phenological behaviour, whereas other showed high temporal niche segregation. Simultaneously, diverse life forms converged into similar phenological patterns.  相似文献   

12.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

13.
The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S. krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.4014, 2.1720, 1.6248, 0.3543 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.  相似文献   

14.
Why and how organisms differ in life‐history strategies across their range is a long‐standing topic of interest to evolutionary ecologists. Although many studies have addressed this issue for several life‐history traits, such as body size and clutch size, very few have been made for some others traits, including longevity. In the present study, we performed a comparative study aiming to develop general patterns of geographical variation in longevity of urodele and anuran amphibians using published information on demographic age derived from skeletochronology. We conducted within‐species meta‐analyses using datasets of two (ten urodele and 12 anuran species) and multiple (two urodele and nine anuran species) spatially‐separated populations and found that maturation, mean, and maximum age all increased with altitude but not with latitude in each sex of both amphibian groups. This geographical pattern held true across 33 urodele and 86 anuran species at common body sizes, independent of phylogeny. It is likely that metabolic rate, reproductive investment, and mortality risk, which are the key factors that affect longevity as suggested by ageing theory, vary systemically along altitudinal gradients but not along latitudinal gradients. The evolutionary causes behind these puzzling patterns deserve further investigation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 623–632.  相似文献   

15.
Carrera  A.L.  Sain  C.L.  Bertiller  M.B. 《Plant and Soil》2000,224(2):185-193
We analysed the main plant strategies to conserve nitrogen in the Patagonian Monte. We hypothesized that the two main plant functional groups (xerophytic evergreen shrubs and mesophytic perennial grasses) display different mechanisms of nitrogen conservation related to their structural and functional characteristics. Evergreen shrubs are deep-rooted species, which develop vegetative and reproductive growth from spring to late summer coupled with high temperatures, independently from water inputs. In contrast, perennial grasses are shallow-rooted species with high leaf turnover, which display vegetative growth from autumn to spring and reproductive activity from mid-spring to early-summer, coupled with precipitation inputs. We selected three evergreen shrubs (Larrea divaricata Cav., Atriplex lampa Gill. ex Moq. and Junellia seriphioides (Gilles and Hook.) Moldenke) and three perennial grasses (Stipa tenuis Phil., S. speciosa Trin. and Rupr. and Poa ligularis Nees ex Steud.), characteristic of undisturbed and disturbed areas of the Patagonian Monte. N concentration in expanded green and senesced leaves was estimated in December 1997 (late spring) and June 1998 (late autumn). Deep-rooted evergreen shrubs displayed small differences in N concentration between green and senesced leaves (low N-resorption efficiency), having high N concentration in senesced leaves (low N-resorption proficiency). Shallow-rooted perennial grasses, conversely, showed high N-resorption efficiency and high N-resorption proficiency (large differences in N concentration between green and senesced leaves and very low N concentration in senesced leaves, respectively). The lack of a strong mechanism of N resorption in evergreen shrubs apparently does not agree with their ability to colonize N-poor soils. These results, however, may be explained by lower N requirements in evergreen shrubs resulting from lower growth rates, lower N concentrations in green leaves, and lower leaf turnover as compared with perennial grasses. Long-lasting N-poor green tissues may, therefore, be considered an efficient mechanism to conserve N in evergreen shrubs in contrast with the mechanism of strong N resorption from transient N-rich tissues displayed by perennial grasses. Evergreen shrubs with low N-resorption efficiency provide a more N-rich substrate, with probably higher capability of N mineralization than that of perennial grasses, which may eventually enhance N fertility and N availability in N-poor soils.  相似文献   

16.
Reproductive allocation strategies have been historically described as lying on a continuum between capital and income breeding. Capital breeders have been defined as species that allocate stored reserves to reproduction, whereas income breeders have been defined as species that allocate relatively recently‐ingested food resources to reproduction. Snakes are considered capital breeders because they efficiently store large amounts of nutrients and energy, potentially enough to support an entire reproductive bout without feeding. We examined the abilities of five viviparous snake species to allocate income to follicles during vitellogenesis. We fed 15N‐labelled L‐leucine to experimental females of each species during vitellogenesis, whereas control females were fed unlabelled meals. After ovulation, we measured yolk 15N p.p.m. using mass spectrometry. Maternal scale samples taken before labelling were used to estimate endogenous 15N concentrations, which should represent ‘capital’. Scale samples taken at ovulation were used to determine whether snakes assimilated 15N‐labelled‐leucine from labelled diets. Yolks and post‐ovulatory scales of labelled females were significantly more enriched in 15N than those of unlabelled females in all species, indicating significant assimilation and allocation of income‐derived amino acids to the yolk during vitellogenesis. The lack of among‐species differences suggests that all species allocated income amino acids to vitellogenesis. The results obtained in the present study suggest that proportional utilization of income or capital depends on the frequency and timing of foraging success during reproductive events. Therefore, capital and income breeding may be consequences of both life‐history and environmental constraints on foraging success, rather than strategies of reproductive allocation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 390–404.  相似文献   

17.
The carotenoid composition of sun leaves of nine species of annual crop plants (some with several varieties) was compared with sun and shade leaves of several other groups of plants, among those sun and shade leaves of several species of perennial shrubs and vines and deep-shade leaves of seven rainforest species. All sun leaves contained considerably greater amounts of the components of the xanthophyll cycle violaxanthin, antheraxanthin and zeaxanthin as well as of β-carotene than the shade leaves, as had previously been reported for a variety of other species by Thayer & Björkman (Photosynthesis Research, 1990, 23, 331–343). Therefore, high light specifically stimulated β,β-carotenoid synthesis. The sun leaves of these crop species did not contain α-carotene which was, however, present in large amounts in all shade leaves and in smaller amounts in sun leaves of three of the four species of perennial shrubs and vines. There was no difference in neoxanthin content on a chlorophyll basis between sun and shade leaves, and there was no consistent general difference in the lutein content between all sun and all shade leaves. The zeaxanthin (and antheraxanthin) content at peak irradiance and the xanthophyll cycle pool size were compared for sun leaves from the different groups of plants with different life forms and different metabolic activities. When growing in full sunlight the annual crop species and a perennial mesophyte had high rates of photosynthesis whereas the perennial shrubs and vines had relatively low photosynthesis rates. More zeaxanthin (and antheraxanthin) were accumulated at noon in full sunlight in those species with the lower photosynthesis rates. However, it was not such that those species also possessed the larger pools of violaxanthin + antheraxanthin + zeaxanthin. Instead, the xanthophyll cycle pools of sun leaves of the annual crop species and the perennial mesophyte were not smaller, and were even possibly larger, than those of sun leaves of the perennial shrubs and vines with low photosynthesis rates. This was so in spite of the fact that the crop species experienced much lesser degrees of excessive light at full sun than the shrubs and vines. Thus, many of the crop species converted only about 30–50% of their xanthophyll cycle pool to zeaxanthin at noon, whereas the shrubs and vines typically converted more than 80% of their pool into zeaxanthin. The crop species also had larger pools of β-carotene than the shrubs and vines but smaller pools of lutein than the majority of the latter species.  相似文献   

18.
The majority of altricial bird species defend their brood against predators more intensively in nestlings rather than eggs stage. Several hypotheses have been proposed to explain this difference. The majority of existing experimental studies have recorded a gradually increasing intensity of nest defence supporting the reproductive value hypothesis. We have compared nest defence in two nesting stages of the red‐backed shrike against two predators of adult birds and against two predators of nests. While the nests with nestlings were defended by parents against three out of four predators, nests with eggs were almost not defended at all. This rapid change in parent nest defence supports rather the vulnerability hypothesis, predicting that the threat to nests with nestlings increases rapidly after hatching, as they became more conspicuous due to their begging and parental provisioning. Unlike most of the species tested previously, the red‐backed shrike uses very vigorous mobbing towards predators. We suggest that the occurrence of this active mobbing (strikes, including physical contact) is a good proxy of the current threat to the nest.  相似文献   

19.
The purpose of the present work is the study of ecdysteroid distribution in annual and perennial Silene species during development. The experimental approach included the measurement of ecdysteroid levels in different plant organs and an evaluation of the contribution of individual organs to the total amount of 20-hydroxyecdysone (20E) produced by the plant. The highest concentrations of 20E were observed in reproductive organs. High levels were also found in leaves with lower levels in stems. Maximal ecdysteroid content for aerial parts was observed during periods of intense growth: at budding or flowering in annual species, and during vegetative growth or budding in perennial species. The contribution of the different organs to the overall ecdysteroid content changes during plant development. Leaves represent the main part of plant mass and 20E content. Reproductive organs represent a relatively small mass, but they contain high concentrations of ecdysteroids and, in terms of the amount of 20E they contain, their contribution is equal to that of stems. Arch.  相似文献   

20.
内蒙古高原4类地带性草原群落,贝加尔针茅(Stipa baicalensis Roshew.)群落、大针茅(S.grandis P.Smirn.)群落、克氏针茅(S.krylovii Roshev.)群落和小针茅(S.klemenzii Roshev.)群落初级生产力连续12年的定位研究结果表明,在气修波动下群落生产力及其稳定性与群落多样性特征的变化是一致的,从贝加尔针茅群落到小针茅群落。植物多样性显下降,群东中起重要作用的植物功能群的数量逐渐减少,群落初级生产力及其稳定性也逐渐降低。生活型功能群组成中,多年生丛生禾草、多年生根茎禾草与苔草和多年生杂类草功能群多样性与群落初级生产力稳定性极显地呈正相关。生态类群组成中,旱生植物和中旱生植物功能群多样性也与群落初级生产力稳定性极显地呈正相关,生态位互补效应(niche complementary effect)可能是高植物多样性群落具有高生产力的机制,而植物多样性对群落初级生产力稳定性的影响可能是通过不同功能群间的补偿作用来实现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号