首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
RNase R and RNase II are the two representatives from the RNR family of processive, 3′ to 5′ exoribonucleases in Escherichia coli. Although RNase II is specific for single-stranded RNA, RNase R readily degrades through structured RNA. Furthermore, RNase R appears to be the only known 3′ to 5′ exoribonuclease that is able to degrade through double-stranded RNA without the aid of a helicase activity. Consequently, its functional domains and mechanism of action are of great interest. Using a series of truncated RNase R proteins we show that the cold-shock and S1 domains contribute to substrate binding. The cold-shock domains appear to play a role in substrate recruitment, whereas the S1 domain is most likely required to position substrates for efficient catalysis. Most importantly, the nuclease domain alone, devoid of the cold-shock and S1 domains, is sufficient for RNase R to bind and degrade structured RNAs. Moreover, this is a unique property of the nuclease domain of RNase R because this domain in RNase II stalls as it approaches a duplex. We also show that the nuclease domain of RNase R binds RNA more tightly than the nuclease domain of RNase II. This tighter binding may help to explain the difference in catalytic properties between RNase R and RNase II.Ribonucleases (RNases) play important roles in RNA metabolism. They are responsible for the maturation of stable RNA and the degradation of RNA molecules that are defective or no longer required by the cell. Both maturation and degradation are initiated by endoribonucleolytic cleavage(s) and completed by the action of exoribonucleases (1). In Escherichia coli, three, relatively nonspecific, 3′ to 5′ processive exoribonucleases are responsible for degradation of RNA: RNase II, RNase R, and polynucleotide phosphorylase (PNPase).3 RNase II and PNPase appear to be primarily responsible for mRNA decay (2), although their precise functions may differ (3). However, mRNAs containing extensive secondary structure, such as repetitive extragenic palindromic sequences, are degraded by PNPase (4, 5) or RNase R (5). Likewise, degradation of highly structured regions of rRNA (6) and tRNA (7),4 is carried out by PNPase and/or RNase R. These findings suggest that PNPase and RNase R are the universal degraders of structured RNAs in vivo, leaving RNase II to act on relatively unstructured RNAs.Whether or not an RNase acts upon a particular RNA appears to depend upon the specificity of the RNase and the accessibility of the RNA to that RNase (1). Purified RNase R readily degrades both single- and double-stranded RNA molecules (5, 8), and it is the only known 3′ to 5′ exoribonuclease able to degrade through double-stranded RNA without the aid of helicase activity. To degrade RNA molecules containing double-stranded regions, RNase R requires a 3′ single-stranded overhang at least 5 nucleotides long to serve as a binding site from which degradation can be initiated (5, 8, 9).5 How RNase R then proceeds through the RNA duplex is of great interest. An important step toward elucidating the mechanism of action of RNase R is to determine the contribution that each of its domains makes to substrate binding and exoribonuclease activity.Despite differences in their physiological roles and intrinsic substrate specificities, RNase R and RNase II both belong to the widely distributed RNR family of exoribonucleases (1012). RNR family members are all large multidomain proteins with processive 3′ to 5′ hydrolytic exoribonuclease activity that share a common linear domain organization. RNase R contains two cold-shock domains (CSD1 and CSD2) near its N terminus, a central nuclease, or RNB domain, an S1 domain near the C terminus, and a low complexity, highly basic region at the C terminus (Fig. 1A). The nuclease domain contains four highly conserved sequence motifs (10, 11). Motif I contains four conserved aspartate residues that are thought to coordinate two divalent metal ions that facilitate a two-metal ion mechanism similar to that of DEDD family exoribonucleases and the proofreading domains of many polymerases (13, 14). CSDs (1517) and S1 domains (18, 19) are well known examples of RNA-binding domains. Interestingly, there are reports that both of these domains can act as nucleic acid chaperones and unwind RNA (2029), providing a possible explanation for the ability of RNase R to degrade structured RNAs. The role of the basic region at the C terminus of RNase R is unknown, but it may act as an RNA-binding domain and/or a mediator of protein-protein interactions.Open in a separate windowFIGURE 1.Linear domain organization of RNase R and RNase II proteins. The CSDs are colored in cyan and blue for CSD1 and CSD2, respectively, the nuclease domains are in green, the S1 domains are red, and the low complexity, highly basic region, found in RNase R only, is in magenta. A, RNase R. RNase R full-length is the full-length wild-type RNase R protein. RNase RΔCSDs lacks both CSD1 and CSD2. RNase RΔBasic is missing the low complexity, highly basic region. RNase RΔS1 is missing both the S1 domain and the low complexity, highly basic region. RNase RΔCSDsΔS1 consists of the nuclease domain alone. B, RNase II. RNase II full-length is the full-length wild-type RNase II protein. RNase IIΔCSDsΔS1 contains the nuclease domain alone.Crystal structures of E. coli wild-type RNase II and a D209N catalytic site mutant in complex with single-stranded RNA have recently been solved (14, 30). In these structures the two CSDs and the S1 domain come together to form an RNA-binding clamp that directs RNA to the catalytic center at the base of a narrow, basic channel within the nuclease domain (14, 30). Only single-stranded RNA can be accommodated by the RNA-binding clamp and the nuclease domain channel, which explains the single strand specificity of RNase II. It is expected that RNase R will adopt a similar structure.In this study, we determine the contribution that each of the domains of RNase R makes to RNA-binding and exoribonuclease activity. We show that the CSDs and the S1 domain are important for substrate binding, although their roles differ. Of most interest, we show that the nuclease domain alone of RNase R is sufficient to degrade through double-stranded RNA, whereas the nuclease domain of RNase II is unable to carry out this reaction. The nuclease domain of RNase R also binds RNA more tightly, which may explain the difference in catalytic properties between RNase R and RNase II.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号