首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Excess abdominal adiposity is a known risk factor for cardiovascular diseases. Computed tomography can be used to examine the visceral (VAT) and subcutaneous (SAT) components of abdominal adiposity, but it is unresolved whether single‐slice or multi‐slice protocols are needed. Research Method and Procedures: Nine computed tomography scans were obtained in the lumbar spine region of 24 adults. The nine slices were obtained at three intervertebral positions (L2–L3, L3–L4, and L4–L5) and at 7 mm above and below these locations. Intra‐site and inter‐site differences in SAT, VAT, total adipose tissue, and the VAT/SAT ratio were examined using ANOVA and confidence intervals for pairwise differences between means. Results: Intervertebral SAT values increased from 103.1 ± 50.9 (standard deviation) cm2 at L2–L3 to 153.3 ± 68.8 cm2 at L4–L5, whereas the corresponding VAT values decreased from 164.3 ± 125.4 to 126.0 ± 82.7 cm2. The VAT/SAT ratio was not constant, decreasing from 1.8 ± 1.4 to 0.9 ± 0.7. Repeated‐measures ANOVA indicated significant inter‐ and intra‐site differences (p ≤ 0.02) for SAT, VAT, and the VAT/SAT ratio at L3?L4 and L4?L5 (p < 0.001). Discussion: These differences show the limitation of using a single‐slice assessment of abdominal fat distribution, both for a subject and between subjects. Furthermore, the sizeable differences in the intra‐site scans indicate that precise repositioning is needed for longitudinal studies. In summary, our findings suggest that a multi‐site imaging protocol may provide a more complete assessment of abdominal fat stores and distribution than use of a single site.  相似文献   

2.
Endothelial dysfunction may link obesity to cardiovascular disease (CVD). We tested the hypothesis that visceral abdominal tissue (VAT) as compared with subcutaneous adipose tissue (SAT) is more related to endothelium‐dependent vasodilation. Among Framingham Offspring and Third Generation cohorts (n = 3,020, mean age 50 years, 47% women), we used multivariable linear regression adjusted for CVD and its risk factors to relate computed tomography (CT)‐assessed VAT and SAT, BMI, and waist circumference (WC), with brachial artery measures. In multivariable‐adjusted models, BMI, WC, VAT, and SAT were positively related to baseline artery diameter and baseline mean flow velocity (all P < 0.001), but not hyperemic mean flow velocity. In multivariable‐adjusted models, BMI (P = 0.002), WC (P = 0.001), and VAT (P = 0.01), but not SAT (P = 0.24) were inversely associated with percentage of flow‐mediated dilation (FMD%). However, there was little incremental increase in the proportion of variability explained by VAT (R2 = 0.266) as compared to SAT (R2 = 0.265), above and beyond traditional risk factors. VAT, but not SAT was associated with FMD% after adjusting for clinical covariates. Nevertheless, the differential association with VAT as compared to SAT was minimal.  相似文献   

3.
It is suggested that a large breast size among women may predict type 2 diabetes risk independent of BMI and waist circumference (WC). The purpose of this study was to determine the independent associations of breast volume with cardiometabolic risk factors and regional fat distribution. A total of 92 overweight or obese premenopausal women (age = 39.9 ± 6.8 years) underwent full‐body magnetic resonance imaging (MRI) for the assessment of breast volume, visceral adipose tissue (VAT), abdominal and lower‐body subcutaneous AT (SAT), and intermuscular AT (IMAT), a 2‐h oral glucose tolerance test (OGTT), and fasting phlebotomy for assessment of triglyceride, total, high‐density lipoprotein–, and low‐density lipoprotein–cholesterol levels. Breast volume was not associated with any of the cardiometabolic risk factors assessed (P > 0.05). However, VAT was consistently associated with a number of cardiometabolic risk factors (OGTT glucose, OGTT insulin, and triglyceride levels) after controlling for age, BMI, WC, breast volume, and the other AT depots. In univariate models, breast volume was positively associated with VAT, IMAT, and abdominal and lower‐body SAT (P < 0.05). After controlling for age, BMI, and WC level, breast volume remained positively associated with VAT and IMAT (P < 0.05), such that women with the highest breast volume had ~1.1 and 1.3 kg more VAT and IMAT, respectively, but no more abdominal or lower‐body SAT, by comparison to women with the smallest breast volume. Thus, the previously documented association between breast size and type 2 diabetes risk may be in part explained by excess VAT and/or IMAT deposition.  相似文献   

4.
Black South African women are more insulin resistant than BMI‐matched white women. The objective of the study was to characterize the determinants of insulin sensitivity in black and white South African women matched for BMI. A total of 57 normal‐weight (BMI 18–25 kg/m2) and obese (BMI > 30 kg/m2) black and white premenopausal South African women underwent the following measurements: body composition (dual‐energy X‐ray absorptiometry), body fat distribution (computerized tomography (CT)), insulin sensitivity (SI, frequently sampled intravenous glucose tolerance test), dietary intake (food frequency questionnaire), physical activity (Global Physical Activity Questionnaire), and socioeconomic status (SES, demographic questionnaire). Black women were less insulin sensitive (4.4 ± 0.8 vs. 9.5 ± 0.8 and 3.0 ± 0.8 vs. 6.0 ± 0.8 × 10?5/min/(pmol/l), for normal‐weight and obese women, respectively, P < 0.001), but had less visceral adipose tissue (VAT) (P = 0.051), more abdominal superficial subcutaneous adipose tissue (SAT) (P = 0.003), lower SES (P < 0.001), and higher dietary fat intake (P = 0.001) than white women matched for BMI. SI correlated with deep and superficial SAT in both black (R = ?0.594, P = 0.002 and R = 0.495, P = 0.012) and white women (R = ?0.554, P = 0.005 and R = ?0.546, P = 0.004), but with VAT in white women only (R = ?0.534, P = 0.005). In conclusion, body fat distribution is differentially associated with insulin sensitivity in black and white women. Therefore, the different abdominal fat depots may have varying metabolic consequences in women of different ethnic origins.  相似文献   

5.
Regional fat distribution rather than overall fat volume has been considered to be important to understanding the link between obesity and metabolic disorders. We aimed to evaluate the independent associations of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with metabolic risk factors in apparently healthy middle‐aged Japanese. Participants were 1,119 men and 854 women aged 38–60 years who were not taking medications for diabetes, hypertension, or dyslipidemia. VAT and SAT were measured by use of computed tomography (CT) scanning. VAT and SAT were significantly and positively correlated with each other in men (r = 0.531, P < 0.001) and women (r = 0.589, P < 0.001). In multiple regression analyses, either measure of abdominal adiposity (VAT or SAT) was positively associated with blood pressure, fasting plasma glucose, and log triglyceride (P < 0.001) and inversely with high‐density lipoprotein (HDL)‐cholesterol (P < 0.001). When VAT and SAT were simultaneously included in the model, the association of VAT with triglycerides was maintained (P < 0.001) but that of SAT was lost. The same was true for HDL‐cholesterol in women. For fasting plasma glucose, the association with VAT was strong (P < 0.001) and the borderline association with SAT was maintained (P = 0.060 in men and P = 0.020 in women). Both VAT and SAT were independently associated with blood pressure (P < 0.001). Further adjustment for anthropometric indices resulted in the independent association only with VAT for all risk factors. In conclusion, impacts of VAT and SAT differed among risk factors. VAT showed dominant impacts on triglyceride concentrations in both genders and on HDL‐cholesterol in women, while SAT also had an independent association with blood pressure.  相似文献   

6.
Pericardial adipose tissue (PAT) is positively associated with fatty liver and obesity‐related insulin resistance. Because PAT is a well‐known marker of visceral adiposity, we investigated the impact of weight loss on PAT and its relationship with liver fat and insulin sensitivity independently of body fat distribution. Thirty overweight nondiabetic women (BMI 28.2–46.8 kg/m2, 22–41 years) followed a 14.2 ± 4‐weeks low‐calorie diet. PAT, abdominal subcutaneous (SAT), and visceral fat volumes (VAT) were measured by magnetic resonance imaging (MRI), total fat mass, trunk, and leg fat by dual‐energy X‐ray absorptiometry and intrahepatocellular lipids (IHCL) by (1)H‐magnetic resonance spectroscopy. Euglycemic hyperinsulinemic clamp (M) and homeostasis model assessment of insulin resistance (HOMAIR) were used to assess insulin sensitivity or insulin resistance. At baseline, PAT correlated with VAT (r = 0.82; P < 0.001), IHCL (r = 0.46), HOMAIR (r = 0.46), and M value (r = ?0.40; all P < 0.05). During intervention, body weight decreased by ?8.5%, accompanied by decreases of ?12% PAT, ?13% VAT, ?44% IHCL, ?10% HOMA2‐%B, and +24% as well as +15% increases in HOMA2‐%S and M, respectively. Decreases in PAT were only correlated with baseline PAT and the loss in VAT (r = ?0.56; P < 0.01; r = 0.42; P < 0.05) but no associations with liver fat or indexes of insulin sensitivity were observed. Improvements in HOMAIR and HOMA2‐%B were only related to the decrease in IHCL (r = 0.62, P < 0.01; r = 0.65, P = 0.002) and decreases in IHCL only correlated with the decrease in VAT (r = 0.61, P = 0.004). In conclusion, cross‐sectionally PAT is correlated with VAT, liver fat, and insulin resistance. Longitudinally, the association between PAT and insulin resistance was lost suggesting no causal relationship between the two.  相似文献   

7.
Objective: This study investigated ethnic and sex differences in the distribution of fat during childhood and adolescence. Design and Methods : A cross‐sectional sample (n = 382), aged 5–18 years, included African American males (n = 84), White males (n = 96), African American females (n = 118), and White females (n = 84). Measures for total body fat (TBF) mass and abdominal adipose tissue (total volume and L4‐L5 cross‐sectional area) for both subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots were assessed by dual‐energy X‐ray absorptiometry and magnetic resonance image, respectively. Analyses of covariance (ANCOVAs) were used to determine ethnic and sex differences in TBF (adjusted for age) and ethnic and sex differences in SAT and VAT (adjusted for both age and TBF). Results: Age‐adjusted TBF was greater in African Americans (P = 0.017) and females (P < 0.0001) compared with Whites and males, respectively. In age‐ and TBF‐adjusted ANCOVAs, no differences were found in the SAT. The VAT volume was, however, greater in Whites (P < 0.0001) and males (P < 0.0001) compared with African Americans and females, respectively. Similar patterns were observed in SAT and VAT area at L4‐L5. Conclusions: The demonstrated ethnic and sex differences are important confounders in the prevalence of obesity and in the assignment of disease risk in children and adolescents.  相似文献   

8.
Insulin resistance is associated with central obesity and an increased risk of cardiovascular disease. Our objective is to examine the association between abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) and insulin resistance, to determine which fat depot is a stronger correlate of insulin resistance, and to assess whether there was an interaction between SAT, VAT, and age, sex, or BMI. Participants without diabetes from the Framingham Heart Study (FHS), who underwent multidetector computed tomography to assess SAT and VAT (n = 3,093; 48% women; mean age 50.4 years; mean BMI 27.6 kg/m2), were evaluated. Insulin resistance was measured using the homeostasis model and defined as HOMAIR ≥75th percentile. Logistic regression models, adjusted for age, sex, smoking, alcohol, menopausal status, and hormone replacement therapy use, were used to assess the association between fat measures and insulin resistance. The odds ratio (OR) for insulin resistance per standard deviation increase in SAT was 2.5 (95% confidence interval (CI): 2.2–2.7; P < 0.0001), whereas the OR for insulin resistance per standard deviation increase in VAT was 3.5 (95% CI: 3.1–3.9; P < 0.0001). Overall, VAT was a stronger correlate of insulin resistance than SAT (P < 0.0001 for SAT vs. VAT comparison). After adjustment for BMI, the OR of insulin resistance for VAT was 2.2 (95% CI: 1.9–2.5; P < 0.0001). We observed an interaction between VAT and BMI for insulin (P interaction = 0.0004), proinsulin (P interaction = 0.003), and HOMAIR (P interaction = 0.003), where VAT had a stronger association in obese individuals. In conclusion, SAT and VAT are both correlates of insulin resistance; however, VAT is a stronger correlate of insulin resistance than SAT.  相似文献   

9.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

10.
Intermuscular adipose tissue (IMAT) is associated with metabolic abnormalities similar to those associated with visceral adipose tissue (VAT). Increased IMAT has been found in obese human immunodeficiency virus (HIV)‐infected women. We hypothesized that IMAT, like VAT, would be similar or increased in HIV‐infected persons compared with healthy controls, despite decreases in subcutaneous adipose tissue (SAT) found in HIV infection. In the second FRAM (Study of Fat Redistribution and Metabolic Change in HIV infection) exam, we studied 425 HIV‐infected subjects and 211 controls (from the Coronary Artery Risk Development in Young Adults study) who had regional AT and skeletal muscle (SM) measured by magnetic resonance imaging (MRI). Multivariable linear regression identified factors associated with IMAT and its association with metabolites. Total IMAT was 51% lower in HIV‐infected participants compared with controls (P = 0.003). The HIV effect was attenuated after multivariable adjustment (to ?28%, P < 0.0001 in men and ?3.6%, P = 0.70 in women). Higher quantities of leg SAT, upper‐trunk SAT, and VAT were associated with higher IMAT in HIV‐infected participants, with weaker associations in controls. Stavudine use was associated with lower IMAT and SAT, but showed little relationship with VAT. In multivariable analyses, regional IMAT was associated with insulin resistance and triglycerides (TGs). Contrary to expectation, IMAT is not increased in HIV infection; after controlling for demographics, lifestyle, VAT, SAT, and SM, HIV+ men have lower IMAT compared with controls, whereas values for women are similar. Stavudine exposure is associated with both decreased IMAT and SAT, suggesting that IMAT shares cellular origins with SAT.  相似文献   

11.
Objective : Circulating and adipose tissue markers of iron overload are increased in subjects with obesity. The aim is to study iron signals in adipose tissue. Methods: Adipose tissue R2* values and hepatic iron concentration (HIC) were evaluated using magnetic resonance imaging (MRI) in 23 middle‐aged subjects with obesity and 20 subjects without obesity. Results: Subcutaneous (SAT) and visceral adipose tissue (VAT) R2* were increased in subjects with obesity (P = 0.004 and P = 0.008) and correlated significantly and positively with HIC in all subjects. Strikingly, most of the associations of liver iron with metabolic parameters were replicated with SAT and VAT R2*. BMI, waist circumference, fat mass, HOMA value, and C‐reactive protein positively correlated with HIC and SAT and VAT R2*. BMI or percent fat mass (but not insulin resistance) contributed independently to 26.8‐34.8% of the variance in sex‐ and age‐adjusted SAT or VAT R2* (β > 0.40, P < 0.005). Within subjects with obesity, total cholesterol independently contributed to 14.8% of sex‐ and age‐adjusted VAT iron variance (β = 0.50, P = 0.025). Conclusions: Increased R2* in adipose tissue, which might indicate iron content, runs in parallel to liver iron stores of subjects with obesity. VAT iron seems also associated with serum cholesterol within subjects with obesity.  相似文献   

12.
Objective: The visceral compartment is a surrogate for visceral adipose tissue. Cross‐sectional visceral compartment area (VCA) has been approximated from waist circumference using a circular model. However, the two‐dimensional shape of the abdomen is rarely circular. This study validated an elliptical model of cross‐sectional total abdominal area (TAA), subcutaneous adipose tissue (SAT) area, and VCA at the L4–L5 level. Research Methods and Procedures: We analyzed magnetic resonance images (MRIs) at the level of the L4–L5 intervertebral space from 35 subjects with a wide range of abdominal adiposity. Waist circumference, abdominal thickness (midline sagittal diameter), abdominal width (coronal diameter at one‐half of abdominal thickness), and abdominal SAT thickness at four sites (front, back, right, and left) were measured from MRI images using an image analysis software. The same anatomical regions were also estimated from anthropometrics purely by geometric formulae of circular and elliptical models. A simple linear regression model was used to interpret the association strength between anthropometric estimates and MRI measures. Results: Estimated TAA by either model was strongly related to MRI TAA (r2 = 0.98, p < 0.0001). The SAT and VCA by MRI analysis showed a stronger association with calculation from an elliptical model (r2 = 0.95 and 0.88, respectively; p < 0.001) than a circular model (r2 = 0.69 and 0.25, respectively; p < 0.001). The absolute prediction residuals and variances were significantly smaller with an elliptical model than a circular model (p < 0.0001). Discussion: An elliptical anthropometric model might be superior to a circular model to estimate abdominal SAT and VCA.  相似文献   

13.

Objective:

There are clear sex differences in the distribution of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in adults, with males having more VAT and less SAT than females. This study assessed whether these differences between the sexes were already present in preschool children. It also evaluated which measures of body composition were most appropriate for assessing abdominal obesity in this age group.

Design and Methods:

One‐hundred and five children (57 boys and 48 girls) participated in the study. Body composition was measured using dual‐energy X‐ray absorptiometry (DXA). Weight, height, and waist circumference (WC) were also recorded. Magnetic resonance imaging (MRI) of the entire abdomen using sixteen 10‐mm‐thick T1‐weighted slices was performed in a subgroup of 48 children (30 boys and 18 girls); SAT and VAT volumes were measured using semiautomated segmentation.

Results:

Boys had significantly more VAT than girls (0.17 versus 0.10 l, P < 0.001). Results showed that VAT correlated significantly with all measurements of anthropometry (P < 0.01) after adjusting for SAT and for total fat mass measured with DXA. The mean limits of agreement between DXA and MRI regarding truncal FM were calculated to be ?11.4 (range ?17.8 to ?3.6), using a Bland–Altman plot.

Conclusion:

Sex differences in adipose tissue distribution are apparent at an early age. MRI is the best method with which to study abdominal fat distribution in young children.
  相似文献   

14.
Visceral adipose tissue (VAT) is associated with abnormal cardiovascular and metabolic profiles. Total VAT volume of the abdominal compartment by magnetic resonance imaging (MRI) is the gold-standard measurement for VAT but is costly and time consuming. Prior studies suggest VAT area on a single slice MR image may serve as a surrogate for total VAT volume but it is unknown if this relationship is maintained in overweight and obese men and women. Untreated sleep apnea subjects enrolled into the Icelandic Sleep Apnea Cohort (ISAC) underwent abdominal MRI. VAT area and subcutaneous adipose tissue (SAT) area at the L2-L3 and L4-L5 interspaces and total VAT and SAT volumes were determined by manual examination using image analysis software; 539 men and 129 women with mean ages of 54.1 and 58.8 years and mean BMI of 32.2 kg/m(2) and 33.7 kg/m(2), respectively, were studied. Mean total VAT volume was 40% smaller and mean total SAT was 25% larger among females compared with males. The correlation with VAT volume was significantly larger for L2-L3 VAT area (r = 0.96) compared to L4-L5 VAT area (r = 0.83). The difference in correlation coefficients was statistically significant (nonparametric bootstrap P < 0.001 with 95% confidence interval (CI) for the difference from 0.11 to 0.15. VAT area at L2-L3 was also significantly better correlated with VAT volume than traditional anthropometric variables. Linear regression analyses demonstrated that L2-L3 area alone was sufficient for predicting total VAT volume and that the nature of the linear association was maintained across all levels of obesity and in both genders.  相似文献   

15.
Objective: The contribution of visceral adipose tissue (VAT) to insulin resistance is well‐established; however, the role of subcutaneous abdominal adipose tissue (SAT) in insulin resistance remains controversial. Sex may determine which of these two components of abdominal obesity is more strongly related to insulin resistance and its consequences. The aim of this study was to determine whether both VAT and SAT contribute to insulin resistance in African Americans and to examine the effects of sex on this relationship. Research Methods and Procedures: This was a cross‐sectional study of 78 nondiabetic African‐American volunteers (44 men, 35 women; age 33.8 ± 7.3 years; BMI 30.9 ± 7.4 kg/m2). VAT and SAT volumes were measured using serial computerized tomography slices from the dome of the diaphragm to the iliac crest. The insulin sensitivity index (SI) was determined from the minimal model using data obtained from the frequently sampled intravenous glucose tolerance test. Results: In men, both VAT and SAT were negatively correlated with SI (r for both correlations = ?0.57; p < 0.01). In women, the correlation coefficient between VAT and SI was ?0.50 (p < 0.01) and between SAT and SI was ?0.67 (p < 0.01). In women, the correlation coefficient for SI with SAT was significantly greater than the correlation coefficient with VAT (p = 0.02). Discussion: Both SAT and VAT are strongly correlated with insulin resistance in African Americans. For African‐American women, SAT may have a greater effect than VAT on insulin resistance.  相似文献   

16.
Objective: To determine the ability of air displacement plethysmography (ADP) to predict visceral adipose tissue (VAT) volume in children. Research Methods and Procedures: Fifty‐five (33 boys/22 girls) white children 13 to 14 years old were studied. Anthropometric measures were collected for body mass, stature, BMI, and waist‐to‐hip ratio (WHR), and body fat percentage was estimated from triceps and subscapular skinfolds, bioelectrical impedance analysis, and ADP. VAT volume was determined using magnetic resonance imaging, using a multiple slice protocol at levels L1 to L5. Results: Boys had significantly (p ≤ 0.05) less VAT volume than girls [645.1 (360.5) cm3 vs. 1035.8 (717.3) cm3]. ADP explained the greatest proportion of the variance in VAT volume compared with the other anthropometric measures. Multiple regression analysis indicated that VAT volume was best predicted by ADP body fat percentage in boys [r2 = 0.81, SE of the estimate (SEE) = 160.1, SEE coefficient of variation = 25%] and by WHR and BMI in girls (r2 = 0.80, SEE = 337.71, SEE coefficient of variation = 33%). Discussion: Compared with the other anthropometric measures, ADP explains the greatest proportion of the variance in VAT volume in children 13 to 14 years old. For boys, ADP is the tool of choice to predict VAT volume, yet using the more simply collected measures of BMI and WHR is recommended for girls. However, large SE of the estimates remained, suggesting that if precision is needed, there is no surrogate for direct imaging of VAT.  相似文献   

17.
The objective of this study was to examine whether lifestyle factors were associated with 5‐year change in abdominal fat measured by computed tomography (CT) in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. We obtained abdominal CT scans at baseline and at 5 years, from African Americans (AA) (N = 339) and Hispanic Americans (N = 775), aged 18–81 years. Visceral (VAT) and subcutaneous (SAT) adipose tissue was measured at the L4/L5 vertebral level. Physical activity was documented by self‐report of vigorous activity and a 1‐year recall instrument. Dietary intake was assessed at follow‐up using a semi‐quantitative food frequency questionnaire referencing the previous year. Generalized linear models, accounting for family structure, were used to assess the associations between percent change in fat accumulation and smoking, physical activity, total calories, polyunsaturated, monounsaturated, protein, and saturated fat intake, percent of calories from sweets, and soluble and insoluble fiber. Soluble fiber intake and participation in vigorous activity were inversely related to change in VAT, independent of change in BMI. For each 10 g increase in soluble fiber, rate of VAT accumulation decreased by 3.7% (P = 0.01). Soluble fiber was not associated with change in SAT (0.2%, P = 0.82). Moderately active participants had a 7.4% decrease in rate of VAT accumulation and a 3.6% decrease in rate of SAT accumulation versus less active participants (P = 0.003 and P = 0.01, respectively). Total energy expenditure was also inversely associated with accumulation of VAT. Soluble fiber intake and increased physical activity were related to decreased VAT accumulation over 5 years.  相似文献   

18.

Objective:

To investigate whether a combination of a selected but limited number of anthropometric measurements predicts visceral adipose tissue (VAT) better than other anthropometric measurements, without resort to medical imaging.

Hypothesis:

Abdominal anthropometric measurements are total abdominal adipose tissue indicators and global measures of VAT and SAAT (subcutaneous abdominal adipose tissue). Therefore, subtracting the anthropometric measurement the more correlated possible with SAAT while being the least correlated possible with VAT, from the most correlated abdominal anthropometric measurement with VAT while being highly correlated with TAAT, may better predict VAT.

Design and Methods:

BMI participants' range was from 16.3 to 52.9 kg m?2. Anthropometric and abdominal adipose tissues data by computed tomography (CT‐Scan) were available in 253 patients (18‐78 years) (CHU Nord, Marseille) and used to develop the anthropometric VAT prediction models.

Results:

Subtraction of proximal thigh circumference from waist circumference, adjusted to age and/or BMI, predicts better VAT (Women: VAT = 2.15 × Waist C ? 3.63 × Proximal Thigh C + 1.46 × Age + 6.22 × BMI ? 92.713; R2 = 0.836. Men: VAT = 6 × Waist C ? 4.41 × proximal thigh C + 1.19 × Age ? 213.65; R2 = 0.803) than the best single anthropometric measurement or the association of two anthropometric measurements highly correlated with VAT. Both multivariate models showed no collinearity problem. Selected models demonstrate high sensitivity (97.7% in women, 100% in men). Similar predictive abilities were observed in the validation sample (Women: R2 = 76%; Men: R2 = 70%). Bland and Altman method showed no systematic estimation error of VAT.

Conclusion:

Validated in a large range of age and BMI, our results suggest the usefulness of the anthropometric selected models to predict VAT in Europides (South of France).
  相似文献   

19.
Objective : Visceral (VAT) and abdominal subcutaneous (SAT) adipose tissues contribute to obesity but may have different metabolic and atherosclerosis risk profiles. We sought to determine the associations of abdominal VAT and SAT mass with markers of cardiac and metabolic risk in a large, multiethnic, population‐based cohort of obese adults. Design and Methods : Among obese participants in the Dallas Heart Study, we examined the cross‐sectional associations of abdominal VAT and SAT mass, assessed by magnetic resonance imaging (MRI) and indexed to body surface area (BSA), with circulating biomarkers of insulin resistance, dyslipidemia, and inflammation (n = 942); and with aortic plaque and liver fat by MRI and coronary calcium by computed tomography (n = 1200). Associations of VAT/BSA and SAT/BSA were examined after adjustment for age, sex, race, menopause, and body mass index. Results : In multivariable models, VAT significantly associated with the homeostasis model assessment of insulin resistance (HOMA‐IR), lower adiponectin, smaller LDL and HDL particle size, larger VLDL size, and increased LDL and VLDL particle number (p < 0.001 for each). VAT also associated with prevalent diabetes, metabolic syndrome, hepatic steatosis, and aortic plaque (p < 0.001 for each). VAT independently associated with C‐reactive protein but not with any other inflammatory biomarkers tested. In contrast, SAT associated with leptin and inflammatory biomarkers, but not with dyslipidemia or atherosclerosis. Associations between SAT and HOMA‐IR were significant in univariable analyses but attenuated after multivariable adjustment. Conclusion : VAT associated with an adverse metabolic, dyslipidemic, and atherogenic obesity phenotype. In contrast, SAT demonstrated a more benign phenotype, characterized by modest associations with inflammatory biomarkers and leptin, but no independent association with dyslipidemia, insulin resistance, or atherosclerosis in obese individuals. These findings suggest that abdominal fat distribution defines distinct obesity sub‐phenotypes with heterogeneous metabolic and atherosclerosis risk.  相似文献   

20.
Objective: There is increasing evidence that depressive mood is associated with central obesity, but little is known about the association between depression and abdominal fat distribution. This study investigated this relationship in premenopausal women. Research Methods and Procedures: We recruited 101 overweight premenopausal women who had no eating disorders as defined using the DSM IV criteria. Depressive mood was assessed using Zung's Self‐Rating Depression Scale (SDS). Areas of visceral (VAT) and subcutaneous (SAT) adipose tissue at the level of vertebral body L4–L5 were measured using computed tomography. Associations of VAT, SAT, and the ratio of VAT to SAT with natural logarithmic transformation [(ln)]SDS were evaluated using linear regression. Anthropometric indices and physical fitness were also measured. Information on socioeconomic status, education level, and alcohol and smoking habits was obtained using self‐administered questionnaires. A hospital nutritionist assessed nutritional status. All of these factors were adjusted for as possible confounding factors in the analyses. Results: The (ln)SDS score showed a positive association with the area of VAT, even after adjusting for the confounders mentioned above (p < 0.01). BMI, waist circumference, maximal oxygen uptake, and age were also associated with the area of VAT (all p < 0.05). In contrast, the (ln)SDS score was not associated with SAT (p > 0.10). Discussion: We showed that depressive mood is associated with VAT, not with SAT, in overweight premenopausal women. These findings may explain some of the association between depression and coronary heart disease. More studies are needed to elucidate the causal relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号